Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T22:42:28.275Z Has data issue: false hasContentIssue false

Structure of Strange Quark Matter and Neutron Stars

Published online by Cambridge University Press:  19 July 2016

James M. Lattimer*
Affiliation:
Dept. of Physics & Astronomy, State Univ. of New York, Stony Brook NY 11794-3800, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The properties of neutron and strange matter stars are discussed from global and observational perspectives. The global features, i.e., the mass-radius relation, the moment of inertia, and the binding energy, of these objects can be understood by examination of the few known relevant analytic solutions to Einstein's equations. A close connection exists between neutron star radii and the density dependence of the isospin dependence of strong interactions, i.e., the nuclear symmetry energy. Interestingly, a similar relation has been found to exist between the symmetry energy and the neutron skin thickness of neutron-rich nuclei, the object of a new generation of laboratory experiments, although these are 1018 times smaller. Recent observations of neutron star masses and radiation radii are summarized. The status of these observations as predictors of nuclear force properties is examined. The combination of observations, laboratory experiments, and theory is an extremely powerful tool for both nuclear physics and nuclear astrophysics.

Type
Part 6: Neutron Stars and Strange Stars
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Barziv, O., Karper, L., van Kerkwijk, M. H., Telging, J. H., & van Paradijs, J. 2001, A&A, 377, 925 (b).Google Scholar
Braje, T. M., & Romani, R. W. 2002, ApJ, 580, 1043.CrossRefGoogle Scholar
Buchdahl, H. 1967, ApJ, 147, 310.CrossRefGoogle Scholar
Burwitz, V., Zavlin, V. E., Neuhäuser, , Predehl, P., Trümper, J., & Brinkman, A. C. 2001, A&A, 379, L35.Google Scholar
Clark, J. S., Goodwin, S. P., Crowther, P. A., Kaper, L., Fairbairn, M., Langer, N., & Brocksopp, C. 2002, A&A, 392, 909 (a).Google Scholar
Kaplan, D. L, Kulkarni, S. R., van Kerkwijk, M. H., & Marshall, H. 2002, ApJ, 570, 79.Google Scholar
Kaplan, D. L., Kulkarni, S. R., & van Kerkwijk, M. H. 2003, ApJ, 588, L33.Google Scholar
Lamb, F. K. & Miller, M. C. 2004, ApJ, submitted (astro-ph/0308179).Google Scholar
Lattimer, J. M., & Prakash, M. 2001, ApJ, 550, 426.Google Scholar
Lattimer, J. M., Prakash, M., Masak, D., & Yahil, A. 1990, ApJ, 355, 241.Google Scholar
Neary, N., Lattimer, J.M., & Lake, K. 2004, in preparation.Google Scholar
Nice, D. J., Splaver, E. M., & Stairs, I. H. 2004, these proceedings (f).Google Scholar
Nice, D. J., Splaver, E. M., & Stairs, I. H. 2003, in ASP Conf. Series, Vol. 302, Radio Pulsars, eds. Bailes, M., Nice, D. J., & Thorsett, S. E., (San Francisco: ASP), p. 75 (g).Google Scholar
Orosz, J. A., & Kuulkers, E. 1999, MNRAS, 305, 132 (d).Google Scholar
Pavlov, G. G., Zavlin, V. E., Sanwal, D., & Trümper, J. 2002, ApJ, 569, L95.Google Scholar
Pons, J. A., Walter, F. M., Lattimer, J. M., Prakash, M., Neuhäuser, R., & An, P. 2002, ApJ, 564, 981.CrossRefGoogle Scholar
Quaintrell, H., Norton, A. J., Ash, T. D. C., Roche, P., Willems, B., Bedding, T. R., Baldry, I. K., & Fender, R. P. 2003, A&A, 401, 313 (c).Google Scholar
Rappaport, S., Podsiadlowski, P., Joss, P.C., DiStefano, R., & Han, Z. 1995, MNRAS, 273, 731.Google Scholar
Rhoades, C. E., & Ruffini, R. 1974, Phys. Rev. Lett., 32, 324.CrossRefGoogle Scholar
Splaver, E. M., Nice, D. J., Arzoumanian, Z., Camilo, F., Lyne, A. G., & Stairs, I. H. 2002, ApJ, 581, 509 (h).CrossRefGoogle Scholar
Thorsett, S. E., & Chakrabarty, D. 1999, ApJ, 512, 288 (e).CrossRefGoogle Scholar
Tolman, R. 1939, Phys. Rev., 55, 364.Google Scholar