Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T17:19:13.504Z Has data issue: false hasContentIssue false

TAURUS observations of active galaxies: NGC 1275 and NGC 4151

Published online by Cambridge University Press:  07 August 2017

S.W. Unger
Affiliation:
Royal Greenwich Observatory, Herstmonceux Castle, E.Sussex BN27 1RP, UK
K. Taylor
Affiliation:
Anglo–Australian Observatory, PO Box 296, Epping, NSW 2121, Australia
A. Pedlar
Affiliation:
Jodrell Bank, Macclesfield, Cheshire SK11 9DL, UK
H. Ghataure
Affiliation:
Jodrell Bank, Macclesfield, Cheshire SK11 9DL, UK
M.V. Penston
Affiliation:
Royal Greenwich Observatory, Herstmonceux Castle, E.Sussex BN27 1RP, UK
D.J. Axon
Affiliation:
Jodrell Bank, Macclesfield, Cheshire SK11 9DL, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have used the TAURUS technique to study the morphology and velocity field of spatially extended emission–line gas in a number of active galaxies. This paper describes our results for NGC 1275 and NGC 4151. The emission line maps of NGC 1275 are the first scientific data from the new 4.2-m William Herschel Telescope, and show that the morphology of the foreground galaxy falling into the Perseus cluster bears a close relationship to that of NGC 1275 itself, implying that the two galaxies are physically associated.

In the case of NGC 4151, we find the emission line region is elongated along the same axis as the nuclear radio source. This cannot be due to emission-line gas being accelerated by radio ejecta, since the emission-line gas rotates with the galactic disk. We suggest that the emission-line gas is being ionized by a highly anisotropic nuclear continuum source, UV photons escaping from the nucleus preferentially along the radio axis.

Type
Part 6: Velocity Fields, Kinematics, NL Profiles
Copyright
Copyright © Kluwer 1989 

References

Atherton, P.D., Taylor, K., Pike, C.D., Harmer, C.F.W., Parker, N.M. & Hook, R.N., 1982. Mon.Not.R.astr.Soc., 201, 661.CrossRefGoogle Scholar
de Young, D.S., Roberts, M.S. & Saslaw, W.C., 1973. Astrophys.J., 185, 809.Google Scholar
Fabian, A.C. & Nulsen, P.E.J., 1977. Mon.Not.R.astr.Soc., 180, 479.Google Scholar
Harrison, B., Pedlar, A., Unger, S.W., Burgess, P., Graham, D.A. & Preuss, E., 1986. Mon.Not.R.astr.Soc., 218, 775.Google Scholar
Heckman, T.M. & Balick, B., 1983. Astrophys.J., 268, 102.Google Scholar
Hu, E.M., Cowie, L.L., Kaaret, P., Jenkins, E.B., York, D.G. & Roesler, F.L., 1983. Astrophys.J., 275, L27.Google Scholar
Kent, S.M. & Sargent, W.L.W., 1979. Astrophys.J., 230, 667.Google Scholar
Lynds, C.R., 1970. Astrophys.J., 159, L151.Google Scholar
Minkowski, R., 1957. IAU Symposium No. 4, ed. van der Hulst, H.C., publ. CUP, p.107.Google Scholar
Pedlar, A., Booler, R.V. & Davies, R.D., 1983. Mon.Not.R.astr.Soc., 203, 667.CrossRefGoogle Scholar
Phillips, M.M., Taylor, K., Axon, D.J., Atherton, P.D. & Hook, R.N., 1984 Nature, 310, 554.Google Scholar
Rubin, V.C., Ford, W.K., Peterson, C.J. & Oort, J.H., 1977. Astrophys.J., 211, 693.Google Scholar
Taylor, K., 1984. Indirect Imaging, ed. Roberts, J.A., publ. CUP, p.379.Google Scholar
Taylor, K. & Atherton, P.D., 1980. Mon.Not.R.astr.Soc., 191, 675.Google Scholar
Unger, S.W., Pedlar, A., Axon, D.J., Whittle, M., Meurs, E.J.A. & Ward, M.J., 1987. Mon.Not.R.astr.Soc., 228, 671.Google Scholar