Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T21:27:00.006Z Has data issue: false hasContentIssue false

Theoretical Models of Magnetic Flux Tubes: Structure and Dynamics

Published online by Cambridge University Press:  03 August 2017

O Steiner*
Affiliation:
Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-7800 Freiburg, FRG

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two types of model calculations for small scale magnetic flux tubes in the solar atmosphere are reviewed. In the first kind, one follows the temporal evolution governed by the complete set of the MHD and radiative transfer equations to a (quasi) stationary solution. From such a solution the continuum contrasts of a photospheric flux tube in the visible and in the infrared continuum at 1.6 μm have been computed and are briefly discussed. The second, more empirical type of method assumes the flux tubes to be in magnetohydrostatic equilibrium. It is computationally faster and more flexible and allows us to explore a wide range of parameters. Models and insights obtained from such parameter studies are discussed in some detail. These include an explanation for the peculiar variation of the area asymmetry of Stokes V profiles across the solar disk in terms of mass motions in the surroundings of magnetic flux tubes.

Furthermore, a two-dimensional model of the lower chromosphere that has been developed is presented. Emphasis is laid on the effect of thermal bifurcation of the lower chromosphere on the structure of the chromospheric magnetic field. If the cool carbon monoxide clouds, observed in the infrared, occupy the non-magnetic regions, the flux tubes expand very strongly and form a magnetic canopy with an almost horizontal base. This has consequences for the spatial distribution of the Ca II K spectral line emission.

Finally, some consideration is given to the formation and destruction of intense magnetic flux tubes in the solar photosphere. The formation is described as a consequence of the flux expulsion process that leads to a convective instability. A possible observational signature of this mechanism is proposed.

Type
Part 5: Magnetic Fields and Infrared Magnetometry
Copyright
Copyright © Kluwer 1994 

References

Anderson, L. S.: 1989, Astrophys. J. 339, 558.Google Scholar
Ayres, T. R.: 1991, in Ulmschneider, P. et al. (eds.), Mechanisms of Chromospheric and Coronal Heating, Springer-Verlag, p. 228.Google Scholar
Ayres, T. R.: 1993, these proceedings.Google Scholar
Ayres, T. R., Testerman, L., Brault, J. W.: 1986, Astrophys. J. 304, 542.Google Scholar
Bünte, M., Solanki, S. K., Steiner, O.: 1992, Astron. Astrophys., submitted.Google Scholar
Bünte, M., Steiner, O., Solanki, S. K.: 1991, in November, L. J. (ed.), Solar Polarimetry, National Solar Observatory, Sunspot, New Mexico, p. 468.Google Scholar
Bünte, M., Steiner, O., Pizzo, V. J.: 1992, Astron. Astrophys., submitted.Google Scholar
Bünte, M., Steiner, O., Solanki, S. K., Pizzo, V. J.: 1993, these proceedings.Google Scholar
Cally, P. S.: 1990 J. Comput. Phys. 93, 411.Google Scholar
Cram, L. E., Damé, L.: 1983, Astrophys. J. 272, 355.Google Scholar
Deinzer, W., Hensler, G., Schüssler, M., Weisshaar, E.: 1984a, Astron. Astrophys. 139, 426.Google Scholar
Deinzer, W., Hensler, G., Schüssler, M., Weisshaar, E.: 1984b, Astron. Astrophys. 139, 435.Google Scholar
Foukal, P., and Moran, T.: 1993, these proceedings.Google Scholar
Foukal, P. Little, R., Graves, J., Rabin, D., Lynch, D.: 1990, Astrophys. J. 353, 712.Google Scholar
Giovanelli, R. G.: 1980, Solar Phys. 68, 49.Google Scholar
Giovanelli, R. G., Jones, H. P.: 1982, Solar Phys. 79, 267.Google Scholar
Grossmann-Doerth, U., Kneer, F., von Uexküll, M.: 1974, Solar Phys. 37, 58.Google Scholar
Grossmann-Doerth, U., Schüssler, M., Solanki, S. K.: 1988, Astron. Astrophys. 206, L37.Google Scholar
Grossmann-Doerth, U., Knölker, M., Schüssler, M., Weisshaar, E.: 1989, in Rutten, R. J. and Severino, G. (eds.), Solar and Stellar Granulation, NATO ASI Series, Vol. 263, Kluwer, Dordrecht, p. 481.Google Scholar
Grossmann-Doerth, U., Schüssler, M., Solanki, S. K.: 1989, Astron. Astrophys. 221, 338.Google Scholar
Hirayama, T.: 1992, Solar Phys. 137, 33.Google Scholar
Hurlburt, N. E., Toomre, J.: 1988, Astrophys. J. 327, 920.Google Scholar
Jahn, K.: 1989, Astron. Astrophys. 222, 264.Google Scholar
Jones, H. P.: 1985, in Lites, B. W. (ed.), Chromospheric Diagnostics and Modelling, National Solar Observatory, Sunspot, New Mexico, p. 175.Google Scholar
Jones, H. P., Giovanelli, R. G.: 1983, Solar Phys. 87, 37.Google Scholar
Keller, C. U., Solanki, S. K., Steiner, O., Stenflo, J. O.: 1990, Astron. Astrophys. 233, 583.Google Scholar
Knölker, M., Schüssler, M.: 1988, Astron. Astrophys. 202, 275.Google Scholar
Knölker, M., Schüssler, M., Weisshaar, E.: 1988, Astron. Astrophys. 194, 257.Google Scholar
Knölker, M., Grossmann-Doerth, U., Schüssler, M., Weisshaar, E.: 1991, Adv. Space Res. 11, (5)285.Google Scholar
Lin, H., Kuhn, R.: 1992, Solar Phys. 141, 1.Google Scholar
Oran, E. S., Boris, J. P.: 1987, Numerical Simulation of Reactive Flow, Elsevier, New York.Google Scholar
Pizzo, V. J.: 1986, Astrophys. J. 302, 785.Google Scholar
Pizzo, V. J.: 1990, Astrophys. J. 365, 764.Google Scholar
Proctor, M. R. E., Weiss, N. O.: 1982, Rep. Prog. Phys., 45, 1317.Google Scholar
Rüedi, I., Solanki, S. K., Livingston, W. C., Stenflo, J. O.: 1992, Astron. Astrophys. 263, 323.Google Scholar
Schüssler, M.: 1984, Astrophys. J. 140, 453.Google Scholar
Schüssler, M.: 1986, in Deinzer, et al. (eds.), Small Scale Magnetic Flux Concentrations in the Solar Photosphere, Vandenhoeck and Ruprecht, Göttingen, p. 127.Google Scholar
Schüssler, M.: 1990, in Stenflo, J. O. (ed.), ‘Solar Photosphere: Structure, Convection, and Magnetic Fields’, Proc. IAU Symp. 138, 161.Google Scholar
Schüssler, M.: 1992, in Schmelz, J. T. and Brown, J. C. (eds.), The Sun – a Laboratory for Astrophysics, NATO Advanced Study Institute, Kluwer, Dordrecht, in press.Google Scholar
Solanki, S. K.: 1986, Astron. Astrophys. 168, 311.Google Scholar
Solanki, S. K.: 1987, , .Google Scholar
Solanki, S. K.: 1993, these proceedings.Google Scholar
Solanki, S. K., Stenflo, J. O.: 1984, Astron. Astrophys. 140, 185.Google Scholar
Solanki, S. K., Steiner, O.: 1990, Astron. Astrophys. 234, 519.Google Scholar
Solanki, S. K., Steiner, O., Uitenbroek, H.: 1991, Astron. Astrophys. 250, 220.Google Scholar
Steffen, M.: 1991, in Crivellari, L. et al. (eds.), Stellar Atmospheres: Beyond Classical Models, NATO ASI Series, Vol. 341, Kluwer, Dordrecht, p. 247.Google Scholar
Steiner, O., Pizzo, V. J.: 1989, Astron. Astrophys. 211, 447.Google Scholar
Steiner, O., Stenflo, J. O.: 1990, in Stenflo, J. O. (ed.), ‘Solar Photosphere: Structure, Convection, and Magnetic Fields’, Proc. IAU Symp. 138, 181.Google Scholar
Steiner, O., Pneuman, G. W., Stenflo, J. O.: 1985, Astron. Astrophys. 170, 126.Google Scholar
Stenflo, J. O.: 1989, Astron. Astrophys. Rev. 1, 3.Google Scholar
Stenflo, J. O.: 1992, in Spicer, D. S. (ed.), Electromechanical Coupling of the Solar Atmosphere, Proc. OSL Workshop, Capri, Italy, Amer. Inst. Phys., in press.Google Scholar
Stenflo, J. O., Harvey, J. W., Brault, J. W., Solanki, S. K.: 1984, Astron. Astrophys. 131, 33.Google Scholar
Stenflo, J. O., Solanki, S. K., Harvey, J. W.: 1987, Astron. Astrophys. 171, 305.Google Scholar
Vernazza, J. E., Avrett, E. H., Loeser, R.: 1981, Astrophys. J. Suppl. 45, 635.Google Scholar
Wiehr, E.: 1985, Astron. Astrophys. 149, 217.Google Scholar