Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T06:01:42.781Z Has data issue: false hasContentIssue false

Theory of Astronomical Masers

Published online by Cambridge University Press:  03 August 2017

Nikolaos D. Kylafis*
Affiliation:
University of Crete, Physics Department, P. O. Box 470, 714 09 Iraklion, Crete, GREECE

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theory of astronomical masers is reviewed. As with laboratory masers, masing occurs when a transition between two energy levels of a molecule exhibits inverted populations. In order to present the basic concepts about masers, an idealized two-level system is used. The exact energy level structure is taken into account later on when the pumping of specific molecules is discussed. Unlike laboratory masers, where the radiation must be bounced between two mirrors to accumulate gain, the propagation of radiation in astronomical masers is a lot simpler. This is because astronomical masers are single-pass and broadband. Thus, the main theoretical effort has concentrated on inventing efficient mechanisms that produce population inversion. Specific pumping mechanisms for the three molecules (H2O, SiO, and OH) that exhibit strong masing are presented and their ability to explain the observations is discussed.

Type
Galactic
Copyright
Copyright © Reidel 1988 

References

Alcock, C. and Ross, R. R. 1985a, Ap. J., 290, 433.CrossRefGoogle Scholar
Alcock, C. and Ross, R. R. 1985b, Ap. J., 299, 763.CrossRefGoogle Scholar
Alcock, C. and Ross, R. R. 1986a, Ap. J., 306, 649.Google Scholar
Alcock, C. and Ross, R. R. 1986b, Ap. J., 310, 838.Google Scholar
Alcock, C. and Ross, R. R. 1986c, Ap. J., 305, 837.Google Scholar
Andresen, P., Hausler, D., Lulf, H. W., and Kegel, W. H. 1984, Astr. Ap., 138, 617.Google Scholar
Baan, W. A. 1985, Nature, 315, 26.CrossRefGoogle Scholar
Chapman, J. M., and Cohen, R. J. 1986, M.N.R.A.S., 220, 513.CrossRefGoogle Scholar
Claussen, M. J., and Lo, K. -Y. 1986, Ap. J., 308, 592.Google Scholar
Cohen, R. J., Downs, G., Emerson, R., Grimm, M., Gulkis, S., Stevens, G., and Tarter, J. 1987, M.N.R.A.S., 225, 491.Google Scholar
Cooke, B., and Elitzur, M. 1985, Ap. J., 295, 175.CrossRefGoogle Scholar
Deguchi, S., and Iguchi, T. 1976, Pub. Astr. Soc. Japan, 28, 307.Google Scholar
Deguchi, S., and Watson, W. D. 1986a, Ap. J. (Letters), 300, L15.Google Scholar
Deguchi, S., and Watson, W. D. 1986b, Ap. J., 302, 750.CrossRefGoogle Scholar
Deguchi, S., Watson, W. D., and Western, L. R. 1986, Ap. J., 302, 108.CrossRefGoogle Scholar
de Jong, T. 1973, Astr. Ap., 26, 297.Google Scholar
Diamond, P. J. 1987, these proceedings.Google Scholar
Dickinson, D. F. 1987, Ap. J., 313, 408.CrossRefGoogle Scholar
Draine, B. T. 1980, Ap. J., 241, 1021.Google Scholar
Draine, B. T. 1981, Ap. J., 246, 1045.CrossRefGoogle Scholar
Draine, B. T., Roberge, W. G., and Dalgarno, A. 1983, Ap. J., 264, 485.Google Scholar
Elitzur, M. 1979, Astr. Ap., 73, 322.Google Scholar
Elitzur, M. 1980, Ap. J., 240, 553.CrossRefGoogle Scholar
Elitzur, M. 1982a, Rev. Mod. Phys., 54, 1225.Google Scholar
Elitzur, M. 1982b, Ap. J., 262, 189.Google Scholar
Elitzur, M. 1986, in Masers, Molecules, and Mass Outflows in Star Forming Regions, ed. Haschick, A. D. (Haystack Observatory), p. 299.Google Scholar
Genzel, R. 1986, in Masers, Molecules, and Mass Outflows in Star Forming Regions, ed. Haschick, A. D. (Haystack Observatory), p. 233.Google Scholar
Goldreich, P., Keeley, D. A., and Kwan, J. Y. 1973, Ap. J., 179, 111.CrossRefGoogle Scholar
Hasegawa, T., Morita, K.-I., Okumura, S., Kaifu, N., Suzuki, H., Ohishi, M., Hayashi, M., and Ukita, N. 1986, in Masers, Molecules, and Mass Outflows in Star Forming Regions, ed. Haschick, A. D. (Haystack Observatory), p. 275.Google Scholar
Johnston, I. D. 1967, Ap. J., 150, 33.Google Scholar
Kwan, J., and Scoville, N. 1974, Ap. J. (Letters), 194, L97.CrossRefGoogle Scholar
Kylafis, N. D., and Norman, C. 1986, Ap. J. (Letters), 300, L73.Google Scholar
Kylafis, N. D., and Norman, C. 1987, Ap. J., in press.Google Scholar
Lane, A. 1982, , University of Massachusetts.Google Scholar
Langer, S. H., and Watson, W. D. 1984, Ap. J., 284, 751.Google Scholar
McIntosh, G. 1987, , University of Massachusetts.Google Scholar
Moran, J. M., Reid, M. J., Lada, C. J., Yen, J. L., Johnston, K. J., and Spencer, J. H. 1978, Ap. J. (Letters), 224, L67.Google Scholar
Reid, M. J., and Moran, J. M. 1981, Ann. Rev. Astr. Ap., 19, 231.Google Scholar
Staveley-Smith, L., Cohen, R. J., Chapman, J. M., Pointon, L., and Unger, S. W. 1987, M.N.R.A.S., in press.Google Scholar
Strelnitskij, V. S. 1980, in IAU Symposium 87, Interstellar Molecules, ed. Andrew, B. H. (Boston: Reidel) p. 591.CrossRefGoogle Scholar
Strelnitskij, V. S. 1984, M.N.R.A.S., 207, 339.Google Scholar
Western, L. R., and Watson, W. D. 1983a, Ap. J., 268, 849.Google Scholar
Western, L. R., and Watson, W. D. 1983b, Ap. J., 274, 195.CrossRefGoogle Scholar
Western, L. R., and Watson, W. D. 1983c, Ap. J., 275, 195.CrossRefGoogle Scholar
Western, L. R., and Watson, W. D. 1984, Ap. J., 285, 158.CrossRefGoogle Scholar