Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T12:13:42.614Z Has data issue: false hasContentIssue false

The role of fossils in the phylogenetic reconstruction of Echinodermata

Published online by Cambridge University Press:  21 July 2017

Colin D. Sumrall*
Affiliation:
Department of Geology, Tulane University, New Orleans, Louisiana 70118, USA
Get access

Abstract

Morphological data can be used effectively in phylogenetic analyses to determine relationships among echinoderm clades. These data in the form of characters are simply hypotheses that any observed morphological state among taxa results from a single character state transformation and is therefore, homologous. All such character states must be scored as potentially homologous unless the hypothesis of homology can be rejected by the tests of similarity, conjunction (a priori), or character congruence (a posteriori). Fossils are not always more incomplete than extant forms and incompleteness originates from non-preservation and long phylogenetic branches. The greatest strength of fossil data lies in its ability to effectively shorten long phylogenetic branches by occurring on the tree nearer to the nodes than extant terminal taxa and thus circumventing positively misleading results encountered in parsimony analysis under long branch conditions.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. A. 1996. Origin of the class Crinoidea. Ninth International Echinoderm Conference Program and Abstracts, p. 24.Google Scholar
Ausich, W. A. 1997. Calyx plate homologies and the early evolutionary history of the Crinoidea, p. 289304. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Bather, F. A. 1930. A class of echinoderms without a trace of radiate symmetry. Archives Zoologica Italiana, 14:431439.Google Scholar
Bell, B. M. 1980. Edrioasteroidea and Edrioblastoidea, p. 158174. In Broadhead, T. W. and Waters, J. A. (eds.), Echinoderms, Notes for a Short Course. University of Tennessee Department of Geological Sciences, Studies in Geology, 3.Google Scholar
Bockelie, J. F. 1981. The Middle Ordovician of the Oslo region, Norway, 30. The eocrinoid genera Cryptocrinites, Rhipidocystis and Bockia . Norsk Geologisk Tidsskrift, 61:123147.Google Scholar
Brett, C. E., Frest, T. J., Sprinkle, J., and Clement, C. R. 1983. Coronoidea: a new class of blastozoan echinoderms based on taxonomic reevaluation of Stephanocrinus . Journal of Paleontology, 57:627651.Google Scholar
De Queiroz, K. 1985. The ontogenetic method for determining character polarity and its relevance to phylogenetic systematics. Systematic Zoology, 34:280299.Google Scholar
Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, A. G., and Rowe, T. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics, 20:431460.CrossRefGoogle Scholar
Durham, J. W., and Caster, K. E. 1963. Helicoplacoidea: A new class of echinoderms. Science, 140:97102.CrossRefGoogle ScholarPubMed
Estabrook, G. F. 1972. Does common equal primitive? Systematic Botany, 2:3642.Google Scholar
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27:401410.CrossRefGoogle Scholar
Fraunfelter, G. H., and Utgaard, J. 1970. Middle Pennsylvanian edrioasteroid from southern Illinois. Journal of Paleontology, 44:279303.Google Scholar
Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics, 4:105209.Google Scholar
Goodman, M. 1989. Emerging alliance of phylogenetic systematics and molecular biology: a new age of exploration, p. 4364. In Fernholm, B., Bremer, K., and Jörnwall, H. (eds.), The Hierarchy of Life. Elsevier Science Publishers, New York.Google Scholar
Harper, C. W. 1976. Phylogenetic inference in paleontology. Journal of Paleontology, 50:180193.Google Scholar
Huelsenbeck, J. P. 1994. Comparing the stratigraphic record to estimates of phylogeny. Systematic Biology, 20:470483.Google Scholar
Jefferies, R. P. S. 1967. Some fossil chordates with echinoderm affinities. Symposium of the Zoological Society of London, 20:163208.Google Scholar
Jefferies, R. P. S. 1968. The subphylum Calcichordata (Jefferies, 1967) primitive fossils chordates with echinoderm affinities. Bulletin of the British Museum (Natural History), Geology, 16:243339.Google Scholar
Jefferies, R. P. S. 1986. The ancestry of the vertebrates. British Museum (Natural History) and Cambridge University Press, London, 376 p.Google Scholar
Jefferies, R. P. S. 1997. A defense of the calcichordates. Lethaia, 30:110.Google Scholar
Kim, J. 1996. General inconsistency conditions for maximum parsimony: effects of branch lengths and increasing numbers of taxa. Systematic Biology, 45:363374.CrossRefGoogle Scholar
Kluge, A. G. 1985. Ontogeny and phylogenetic systematics. Cladistics, 1:1327.CrossRefGoogle ScholarPubMed
Kolata, D. R., Frest, T. J., and Mapes, R. H. 1991. The youngest carpoid: occurrence, affinities, and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. Journal of Paleontology, 65:844855.Google Scholar
Kraus, F. 1988. An empirical evaluation of the use of the ontogeny polarization criterion in phylogenetic inference. Systematic Zoology, 37:106141.Google Scholar
Lamboy, W. F. 1994. The accuracy of the maximum parsimony method for phylogeny reconstruction with morphological characters. Systematic Botany, 19:489505.CrossRefGoogle Scholar
Llvezey, B. C. 1997. A phylogenetic analysis of geese and swans (Anseriformes: Anserinae), including selected fossil species. Systematic Biology, 46:415450.Google Scholar
Mabee, P. M. 1993. Phylogenetic interpretation of ontogenetic change: sorting out the actual and artifactual in an empirical case study of centrarchid fishes. Zoological Journal of the Linnaean Society, 107:175291.Google Scholar
Maddison, W. P. 1993. Missing data versus missing characters in phylogenetic analysis. Systematic Biology, 42:576580.Google Scholar
Maddison, W. P., Donoghue, M. J., and Maddison, D. R. 1984. Outgroup analysis and parsimony. Systematic Zoology, 33:83103.Google Scholar
Marshal, C. R. 1994. Molecular approaches to echinoderm phylogeny, p. 6371. In David, B., Guille, A., Féral, J., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Mooi, R., and David, B. 1997. Skeletal homologies of echinoderms, p. 305335. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Mooi, R., David, B., and Marchand, D. 1994. Echinoderm skeletal homologies: classical morphology meets modern phylogenetics, p. 8795. In David, B., Guille, A., Féral, J., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Nelson, G. 1978. Ontogeny, phylogeny, paleontology, and the biogenetic law. Systematic Zoology, 27:324345.Google Scholar
Parsley, R. L. 1991. Review of selected North American mitrate stylophorans (Homalozoa: Echinodermata). Bulletins of American Paleontology, 100:157.Google Scholar
Parsley, R. L., and Caster, K. E. 1975. Zoological affinities and functional morphology of the Mitrata (Echinodermata). Geological Society of America Abstracts with Program, 7:12251226.Google Scholar
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Systematics, 12:195223.Google Scholar
Patterson, C. 1982. Morphological characters and homology, p. 2174. In Joysey, K. A., and Friday, A. E. (eds.), Systematics Association Special Volume 21: Problems of Phylogeny Reconstruction. Academic Press, New York.Google Scholar
Paul, C. R. C. 1982. The adequacy of the fossil record, p. 75117. In Joysey, K. A. and Friday, A. E. (eds.), Systematics Association Special Volume, 21. Academic Press, New York.Google Scholar
Paul, C. R. C. 1985. The adequacy of the fossil record reconsidered. Palaeontological Association Special Papers in Paleontology, 33:715.Google Scholar
Paul, C. R. C. 1988. The phylogeny of the cystoids, p. 199213. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolution. Clarendon Press, Oxford.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.CrossRefGoogle Scholar
Pearse, V. B., and Pearse, J. S. 1994. Echinoderm phylogeny and the place of concentricycloids, p. 121126. In David, B., Guille, A., Féral, J., and Roux, M. (eds.), Echinoderms through Time. A. A. Balkema, Rotterdam.Google Scholar
Petersen, K. J. 1995. A phylogenetic test of the calcichordate scenario. Lethaia, 28:2537.Google Scholar
Raff, R. A., Field, K. G., Ghiselin, M. T., Lane, D. J., Olsen, G. J., Pace, N. R., Parks, A. L., Parr, B. A., and Raff, E. C. 1988. Molecular analysis of distant phylogenetic relationships in echinoderms, p. 2941. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolution. Clarendon Press, Oxford.Google Scholar
Ratto, A., and Cristen, R. 1990. Phylogénie moléculaire des échinodermes déduite de séquences paetielles des RNA ribosomique 28S. Académie des Sciences Paris, comptes Rendus séances, 310:69173.Google Scholar
Rowe, T. 1996a. Brain heterochrony and the origin of the mammalian middle ear. Memoirs of the California Academy of Sciences, 20:7195.Google Scholar
Rowe, T. 1996b. Coevolution of the mammalian middle ear and neocortex. Science, 273:651654.Google Scholar
Rozhnov, S. V. 1994. Comparative morphology of Rhipidocystis Jaekel, 1900 and Cryptocrinites von Buch, 1840 (Eocrinoidea; Ordovician), p. 173178. In David, B., Guille, A., Féral, J., and Roux, M. (eds.), Echinoderms Through Time. Balkema, Rotterdam.Google Scholar
Schaeffer, B. 1987. Deuterostome monophyly and phylogeny. Evolutionary Biology, 21:179235.CrossRefGoogle Scholar
Sibley, C. G., and Ahlquist, J. E. 1987. Avian phylogeny reconstructed from comparisons of the genetic material, DNA, p. 95122. In Patterson, C. (ed.), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge University Press, Cambridge.Google Scholar
Smiley, S. 1988. The phylogenetic relationships of holothurians: a cladistic analysis of the extant echinoderm classes, p. 6984. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolution. Clarendon Press, Oxford.Google Scholar
Smith, A. B. 1984a. Classification of the Echinodermata. Palaeontology, 27:431459.Google Scholar
Smith, A. B. 1984b. Echinoid Paleobiology. George Allen and Unwin, London, 190 p.Google Scholar
Smith, A. B. 1988. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence, p. 85101. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolution. Clarendon Press, Oxford.Google Scholar
Smith, A. B. 1997. Echinoderm phylogeny: How congruent are morphological and molecular estimates?, p. 337355. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Smith, A. B., Lafay, B., and Cristen, R. 1992. Comparative variation of Morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids. Philosophical Transactions of the Royal Society of London, B338:365382.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology, Special Publication, Cambridge, 283 p.Google Scholar
Sprinkle, J. 1975. The “arms” of Caryocrinites, a rhombiferan cystoid convergent on crinoids. Journal of Paleontology, 49:10621073.Google Scholar
Sprinkle, J., and Kolata, D. 1982. “Rhomb-bearing” camerate, p. 206211. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions Monograph, 1, 369 p. Google Scholar
Sprinkle, J., and Wahlman, G. P. 1994. New echinoderms from the Early Ordovician of west Texas. Journal of Paleontology, 68:324338.CrossRefGoogle Scholar
Strathmann, R. R. 1988. Larvae, phylogeny, and von Baer's law, p. 5368. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Sumrall, C. D. 1996. A Phylogenetic Analysis of Echinodermata Based on Primitive Fossil Taxa. Unpublished Ph.D. Dissertation, University of Texas at Austin, 360 p.Google Scholar
Sumrall, C. D., Brochu, C. A., and Merck, J. W. Jr. 1996. The effects of multiple primitive states and single taxon outgroups on parsimony-based phylogenetics. Geological Society of America Abstracts with Programs, 28(1):65.Google Scholar
Sumrall, C. D., and Sprinkle, J. 1995a. Peristomal bordering plates in fossil echinoderms. Geological Society of America Abstracts with Programs, 27:A113.Google Scholar
Sumrall, C. D., and Sprinkle, J. 1995b. Plating and pectinirhombs of the Ordovician rhombiferan Plethoschisma. Journal of Paleontology, 69:772778.Google Scholar
Sumrall, C. D., and Sprinkle, J. In press. Phylogenetic analysis of Echinodermata based on primitive fossil taxa. In Mooi, R. (ed.) Echinoderms—San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Sumrall, C. D., Sprinkle, J., and Guensburg, T. A. In press. Systematics and paleoecology of Late Cambrian echinoderms from the western United States. Journal of Paleontology.Google Scholar
Thiele, K. 1993. The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics, 9:275304.Google Scholar
Ubaghs, G. 1961. Sur la nature de l'organe appelé tige ou pédoncule chez les Carpoïdes Cornuta et mitrata. Académie des Sciences Paris, comptes Rendus séances, 253:27382740.Google Scholar
Ubaghs, G. 1967 [1968]. Stylophora, p. S495S565. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas, New York and Lawrence.Google Scholar
Ubaghs, G. 1969 [1970]. Les Échinodermes Carpoïdes de l'Ordovicien Infërieur de la Montagne Noire (France). Cahiers de Paléontologie, Paris, Centre National de la Recherche Scientifique, 112 p.Google Scholar
Ubaghs, G., and Robison, R. A. 1988. Homalozoan echinoderms of the Wheeler Formation (Middle Cambrian) of western Utah. University of Kansas Paleontological Contributions Paper, 120:117.Google Scholar
Wada, H., and Satoh, N. 1994. Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S r DNA, coincide with relationships deduced from the fossil record. Journal of Molecular Evolution, 38:4149.Google Scholar
Warheit, K. I. 1992. The role of morphometrics and cladistics in the taxonomy of fossils: a paleornithological example. Systematic Biology, 41:345369.Google Scholar
Watrous, L. E., and Wheeler, Q. D. 1981. The out-group comparison method of character analysis. Systematic Zoology, 30:111.Google Scholar