Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T00:53:41.780Z Has data issue: false hasContentIssue false

Molecular Paleobiology and the Cambrian Explosion: 21st Century Answers to 19th Century Problems

Published online by Cambridge University Press:  21 July 2017

Kevin J. Peterson*
Affiliation:
Department of Biological Sciences Dartmouth College Hanover, NH 03755
Get access

Abstract

A number of challenges face us paleontologists as we head into the 21st century. None is more difficult than explaining the Cambrian explosion, the dramatic differentiation of most metazoan animal phyla and classes about 545–530 million years ago. Molecular paleobiology, the experimental and theoretical integration of the geologic and the genetic historical records of life, holds promise to help elucidate the causality of the Cambrian explosion, especially as it relates to understanding how so many animal body plans appeared in such a relatively short period of time, and why these body plans were so stable over the subsequent 500 million years. Three discoveries made over the last few years suggest that the answers to these problems might be right around the corner. First, the notion that phenotypic plasticity was higher early, as compared to later, in a clade's history has finally been confirmed and quantified for trilobites. Second, it has been shown that a recently discovered group of genes, microRNAs, regulate the precision of genic output, turning what is a fairly sloppy process (the number of transcripts derived from any genetic locus) into a precise number of protein molecules. And third, microRNAs are continuously being added to metazoan genomes, with their first major influx occurring at the base of the protostomes and deuterostomes, the very animals that so dramatically make their first appearances in the Early Cambrian. I propose that because phenotypic variation decreases through geologic time, that because miRNAs decrease genic variation in output levels, and because the number of miRNAs found within a genome increases through geologic time, miRNAs might be instrumental in the canalization of development, sacrificing phenotypic variation for developmental precision, and ultimately allowing for increases to morphological complexity. Hence, part of the solution to the Cambrian conundrum might be microRNAs, how they control development through ontogenetic time, and how they evolve through geologic time.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amundson, R. 2005. The Changing Role of the Embryo in Evolutionary Thought. Cambridge University Press, Cambridge, 280 p.Google Scholar
Bengtson, S. (ed.). 1994. Early Life on Earth. Columbia University Press, Columbia, 630 p.Google Scholar
Bengtson, S., and Zhao, Y. 1997. Fossilized metazoan embryos from the Earliest Cambrian. Science, 277:16451648.CrossRefGoogle Scholar
Brasier, M., Green, O., and Shields, G. 1997. Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology, 25:303306.Google Scholar
Briggs, D. E. G., and Fortey, R. A. 2005. Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology, 31 (Supplement):94112.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science, 256:16701673.Google Scholar
Britten, R. J., and Davidson, E. H. 1969. Gene regulation for higher cells: a theory. Science, 165:349357.Google Scholar
Butterfield, N. J. 2007. Macroevolution and macroecology through deep time. Palaeontology 50:4155.Google Scholar
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2006. Late-Neoproterozoic deepocean oxygenation and the rise of animal life. Science, 315:9295.Google Scholar
Chen, K., and Rajewsky, N. 2007. The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8:93103.CrossRefGoogle ScholarPubMed
Coyne, J. A. 2006. Comment on “Gene regulatory networks and the evolution of animal body plans”. Science, 313:761b.Google Scholar
Cui, Q., Yu, Z., Purisima, E. O., and Wang, E. 2007. MicroRNA regulation and interspecific variation of gene expression. Trends in Genetics, 23:372375.Google Scholar
Darwin, C. 1859. On the Origin of Species. (Republished by Harvard University Press, Cambridge, 1964), 502 p.Google Scholar
Davidson, E. H., and Erwin, D. H. 2006. Gene regulatory networks and the evolution of animal body plans. Science, 311:796800.Google Scholar
Dong, X.-P., Donoghue, P. C. J., Cheng, H., and Liu, J.-B. 2004. Fossil embryos from the Middle and Late Cambrian period of Hunan, south China. Nature, 427:237240.Google Scholar
Donoghue, P. C. J., Sansom, I. J., and Downs, J. P. 2006. Early evolution of vertebrate skeleton tissues and cellular interactions, and the canalization of skeletal development. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution, 306B:278294.CrossRefGoogle Scholar
Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A., and Erwin, D. H. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biology 6:693708.Google Scholar
Erwin, D. H. 1994. Early introduction of major morphological innovations. Palaeontologia Polonica, 38:281294.Google Scholar
Erwin, D. H. 2007. Disparity: morphological pattern and developmental context. Palaeontology, 50:5773.CrossRefGoogle Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. J. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41: 11771186.Google Scholar
Fedonkin, M. A., and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.Google Scholar
Filipowicz, W., Bhattacharyya, S. N., and Sonenberg, N. 2008. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics, 9:102114.CrossRefGoogle ScholarPubMed
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology, Evolution, and Systematics, 28:129152.Google Scholar
Gao, F., and Davidson, E. H. 2008. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proceedings of the National Academy of Sciences, 105:60916096.Google Scholar
Gehling, J. G., and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacaran fauna of South Australia. Journal of Paleontol. 70:185195.Google Scholar
Gould, S. J. 1989. Wonderful Life. W. W. Norton & Company, New York and London, 352 p.Google Scholar
Gould, S. J. 2002. The Structure of Evolutionary Theory. Belknap Press; Harvard University Press, Cambridge; London, 1465 p.Google Scholar
Hagadorn, J. W., Xiao, S., Donoghue, P. C. J., Bengtson, S., Gostling, N. J., Pawlowska, M., Raff, E. C., Raff., R. A., Turner, F. R., Chongyu, Y., Zhou, C., Yuan, X., McFeely, M. B., Stampanoni, M., and Nealson, K. H. 2006. Cellular and subcellular structure of Neoproterozoic animal embryos. Science, 314:291294.Google Scholar
Heimberg, A. M., Sempere, L. F., Moy, V. N., Donoghue, P. C. J., and Peterson, K. J. 2008. MicroRNAs and the advent of vertebrate morphological complexity. Proceedings of the National Academy of Sciences, 105:29462950.Google Scholar
Hertel, J., Lendemeyer, M., Missal, K., Fried, C., Tanzer, A., Flamm, C., Hofacker, I. L., and Stadler, P. F. 2006. The expansion of the metazoan microRNA repertoire. BMC Genomics, 7:25.CrossRefGoogle ScholarPubMed
Hobert, O. 2008. Gene regulation by transcription factors and microRNAs. Science, 319: 17851786.Google Scholar
Hornstein, E., and Shomron, N. 2006. Canalization of devlepment by microRNAs. Nature Genetics 38(Supplement):S20S24.Google Scholar
Hughes, N. C. 2007. Strength in numbers: high phenotypic variance in early Cambrian trilobites and its evolutionary implications. Bioessays, 29:10811084.CrossRefGoogle ScholarPubMed
Hunt, G. 2007. Variation and early evolution. Science, 317:459460.CrossRefGoogle ScholarPubMed
Jablonski, D., and Bottjer, D. J. 1990. The ecology of evolutionary innovations: the fossil record, p. 253288. In Nitecki, M. H. (ed.), Evolutionary Innovations. The University of Chicago Press, Chicago and London.Google Scholar
Jackson, D. J., Macis, L., Reitner, J., Degnan, B. M., and Wörheide, G. 2007. Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science, 316:18931895.Google Scholar
Jeffery, C. H., Emlet, R. B., and Littlewood, D. T. J. 2003. Phylogeny and evolution of developmental mode in temnopleurid echinoids. Molecular phylogenetics and evolution, 28:99118.Google Scholar
King, N., Westobrook, M. J., Young, S. L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I., Marr, M., Pincus, D., Putnam, M., Rokas, A., Wright, K. J., Zuzow, R., Dirks, W., Good, M., Goodstein, D., Lemons, D., Li, W., Lyons, J. B., Morris, A., Nichols, S., Richter, D. J., Salamov, A., Sequencing, J., Bork, P., Lim, W. A., Manning, G., Miller, W. T., McGinnis, W., Shapiro, H., Tijan, R., Grigoriev, I. V., and Rokhsar, D. 2008. The genome of the choanoflagellate Monisiga brevicollis and the origin of metazoans. Nature, 451:783788.Google Scholar
Knoll, A. H. 2003. Life on a Young Planet. Princeton University Press, Princeton; Oxford, 277 p.Google Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284: 21292137.Google Scholar
Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. 2001. Identification of novel genes coding for small expressed RNAs. Science 294: 853858.Google Scholar
Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kampphorst, A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foà, R., Schliwka, J., Fuchs, U., Novosei, A., Müller, R.-U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H.-I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M., and Tuschl, T. 2007. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129:14011414.Google Scholar
Larroux, C., Fahey, B., Degnan, S. M., Adamski, M., Rokhsar, D., and Degnan, B. M. 2007. The NK homeobox gene cluster predates the origin of Hox genes. Current Biology, 17:706710.Google Scholar
Larroux, C., Luke, G. N., Koopman, P., Rokhsar, D., Shimeld, S. M., and Degnan, B. M. 2008. Genesis and expansion of metazoan transcription factor gene classes. Molecular biology and evolution, 25:980996.Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294:858862.CrossRefGoogle ScholarPubMed
Lee, C.-T., Risom, T., and Strauss, W. M. 2007. Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions DNA. Cell Biology, 26:209218.Google Scholar
Lee, R. C., and Ambros, V. 2001. An extensive class of small RNAs in Caenorhabditis elegans . Science, 294:862864.Google Scholar
Lee, R. C., Feinbaum, R. L., and Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAS with antisense complementarity to lin-14. Cell. 75:843854.Google Scholar
Lieberman, B. S., Allmon, W. D., and Eldredge, N. 1993. Levels of selection and macroevolutionary patterns in the turritellid gastropods. Paleobiology, 19:205215.Google Scholar
Lu, J., Shen, Y., Wu, Q., Kumar, S., He, B., Shi, S., Carthew, R. W., Wang, S. M., and Wu, C.-I. 2008. The birth and death of microRNA genes in Drosophila. Nature Genetics, 40:351355.Google Scholar
Makeyev, E. V., and Maniatis, T. 2008. Multilevel regulation of gene expression by microRNAs. Science, 319:17891790.Google Scholar
McFadden, K. A., Huang, J., Chu, X., Jiang, G., Kaufman, A. J., Zhou, C., Yuan, X., and Xiao, S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 105:31973202.Google Scholar
Michalak, P. 2006. RNA world - the dark matter of evolutionary genomics. Journal of evolutionary biology, 19:17681774.Google Scholar
Niwa, R., and Slack, F. J. 2007. The evolution of animal microRNA function. Current Opinion in Genetics and Development, 17: 145150.Google Scholar
Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. F., Degnan, D., Müller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E., and Ruvkun, G. 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408:8689.Google Scholar
Peterson, K. J., and Butterfield, N. J. 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences, 102:95479552.Google Scholar
Peterson, K. J., Cotton, J. A., Gehling, J. G., and Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and geologic fossil records. Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 363:14351443.Google Scholar
Peterson, K. J., and Davidson, E. H. 2000. Regulatory evolution and the origin of the bilaterians. Proceedings of the National Academy of Sciences, 97:44304433.Google Scholar
Peterson, K. J., McPeek, M. A., and Evans, D. A. D. 2005. Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. Paleobiology 31(Supplement):3655.Google Scholar
Peterson, K. J., Summons, R. E., and Donoghue, P. C. J. 2007. Molecular Paleobiology. Palaeontology, 50:775809.Google Scholar
Prochnik, S. E., Rokhsar, D., and Aboobaker, A. A. 2007. Evidence for a microRNA expansion in the bilaterian ancestor. Development Genes and Evolution, 217:7377.CrossRefGoogle ScholarPubMed
Prud'Homme, B., Gompel, N., Rokas, A., Kassner, V. A., Williams, T. A., Yeh, S.-D., True, J. R., and Carroll, S. B. 2006. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature, 440:10501053.Google Scholar
Putnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A., Terry, A., Shapiro, H., Lindquist, E., Kapitonov, V. V., Jurka, J., Genikhovich, G., Grigoriev, I. V., Lucas, S. M., Steele, R. E., Finnerty, J. R., Technau, U., Martindale, M. Q., and Rokhsar, D. 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science, 317:8694.Google Scholar
Richter, J. D. 2008. Think you know how miRNAs work? Think again. Nature Structural and Molecular Biology, 15:334336.Google Scholar
Runnegar, B. 1986. Molecular palaeontology. Palaeontology, 29:124.Google Scholar
Ruvkun, G., Wightman, B., and Ha, I. 2004. The 20 years it took to recognize the importance of tiny RNAs. Cell, S116:S93S96.Google Scholar
Sabbagh, K. 1999. The Rum Affair: A True Story of Botanical Fraud. Farrar, Straus and Giroux, New York, 296 p.Google Scholar
Schopf, J. W. 1983. Earth's Earliest Biosphere. Princeton University Press, Princeton, 543 p.Google Scholar
Schopf, J. W., and Klein, C. 1992. The Proterozoic Biosphere. Cambridge University Press, Cambridge, 1348 p.Google Scholar
Sempere, L. F., Cole, C. N., McPeek, M. A., and Peterson, K. J. 2006. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution 306B: 575588.Google Scholar
Shalgi, R., Lieber, D., Oren, M., and Pilpel, Y. 2007. Global and local architecture of the mammalian microRNA-trascription factor regulatory network. PLoS Computational Biology 3:12911304.Google Scholar
Shubin, N. H., and Marshall, C. R. 2000. Fossils, genes, and the origin of novelty. Paleobiology, 26:324340.Google Scholar
Simionato, E., Ledent, V., Richards, G., Thomas-Chollier, M., Kerner, P., Coornaert, D., Degnan, B. M., and Vervoort, M. 2007. Origin and diversification of the basic helixloop-helix gene family in metazoans: insights from comparative genomics. BMC Evolutionary Biology, 7:33.Google Scholar
Sprinkle, J., and Guensberg, T. E. 1997. Early radiation of echinoderms, p. 205224. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of echinoderms, Paleontological Society Papers 3.Google Scholar
Stefani, G., and Slack, F. J. 2008. Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9:219230.Google Scholar
Thewissen, J. G. M., Cooper, L. M., Clementz, M. T., Bajpai, S., and Tiwari, B. N. 2007. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature, 450:11901194.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall, Englewood Cliffs, 511 p.Google Scholar
Valentine, J. W. 1986. Fossil record of the origin of Baupläne and its implications, p. 209222. in Raup, D. M. and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Springer-Verlag, Berlin.Google Scholar
Valentine, J. W. 1995. Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited. Palaios, 10:190194.Google Scholar
Valentine, J. W., and May, C. L. 1996. Hierarchies in biology and paleontology. Paleobiology, 22:2333.Google Scholar
Van Rooij, E., Liu, N., and Olson, E. N. 2008. MicroRNAs flex their muscles. Trends in Genetics, 24:159166.Google Scholar
Van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., and Olson, E. N. 2007. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316:575579.Google Scholar
Webster, M. 2007. A Cambrian peak in morphological variation within trilobite species. Science, 317:499502.Google Scholar
Wightman, B., Ha, L., and Ruvkun, G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75:855862.Google Scholar
Wittkopp, P. J., Kaerum, B. K., and Clark, A. G. 2008. Regulatory changes underlying expression differences within and between Drosophila species. Nature Genetics, 40:346350.Google Scholar
Zhao, Y., and Srivastava, D. 2007. A developmental view of microRNA function. Trends in biochemical sciences, 32:189197.CrossRefGoogle ScholarPubMed
Zhou, Y., Ransom, J. F., Li, A., Vedantham, V., Von Drehle, M., Muth, A. N., Tsuchihashi, T., McManus, M. T., Schwartz, R. J., and Srivastava, D. 2007. Dysregualation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129:303317.Google Scholar