Article contents
Depletion of retinal dopamine increases brightness perception in goldfish
Published online by Cambridge University Press: 02 June 2009
Abstract
The effect of unilateral depletion of retinal dopamine on goldfish visual behavior was studied using a behavioral reflex, the dorsal light reaction (DLR). Retinal dopamine was depleted by intraocular injections of 6–hydroxydopamine (6–OHDA) on two successive days. By 2 weeks postinjection, dopamine interplexiform cells (DA-IPC) were not detected using tyrosine-hydroxylase immunoreactivity (TH-IR). By 6 weeks postinjection, generation of DA-IPC was observed at the marginal zone and by 9 months postinjection, 2–3 rows of DA-IPC were present at the marginal zone. Neurites extended several hundred micrometers toward the central retina. By 2 weeks postinjection, all 6–OHDA lesioned fish tilted 7–15 deg toward the injected eye under uniform overhead illumination. The tilting did not occur under scotopic illumination and reappeared within 1 min of light adaptation. Quantitation of the DLR showed that 6–OHDA lesioned fish behaved as if light were 2.4 log units more intense to the injected eye. Partial recovery was observed by 9 months postinjection, paralleling the reappearance of DA-IPC at the marginal zone. Tilting also was induced by unilateral intraocular injection with Dl and D2 dopamine receptor antagonists, SCH 23390 and S(—)-sulpiride, respectively. Fish did not tilt if they were light adapted at the time of injection. Tilting was observed if the animals were dark-adapted for 3 h and left in the dark for 1 h postinjection. Fish tilted toward the drug-injected eye within 2 min of light adaptation and gradually returned to vertical within 2 h. The tilting response to S(—)-sulpiride was stronger (˜20 deg vs. ˜5 deg) and occurred at lower concentration (1 μM vs. 10 μM) compared to SCH 23390. We conclude that dopamine depletion mimics the dorsal light reaction by increasing the luminosity output of the eye and that dopamine is directly involved in photopic luminosity function.
- Type
- Research Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1994
References
- 36
- Cited by