Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T05:08:38.937Z Has data issue: false hasContentIssue false

A mechanistic model of purple nutsedge (Cyperus rotundus) population dynamics

Published online by Cambridge University Press:  12 June 2017

Christophe Neeser
Affiliation:
Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Renán Agüero
Affiliation:
Plant Science, University of Costa Rica, San José, Costa Rica

Abstract

We constructed a mechanistic model of purple nutsedge tuber population dynamics to provide a theoretical framework for the integrated management of this weed. The model relies on a transition matrix with 10 age classes to simulate fluctuations in the tuber population. Parameters of the transition matrix are given by functions of density, age, and cumulated incident photosynthetically active radiation (PAR) underneath crop canopies. Sensitivity ratios based on a 10% reduction in parameter values indicated that the parameters of the birthrate function were most sensitive. Simulations showed that in the absence of weed control, cumulated incident PAR was by far the strongest determinant of population size; intraspecific interference was the strongest determinant of the rate of population increase. When weed control was introduced, the simulation suggested that 95% control would be required to eliminate this weed. The analysis of simulation results led to the formulation of five research hypotheses of practical relevance to the management of purple nutsedge. New insights gained by testing these hypotheses should lead to practical recommendations as well as a better understanding of the relationships between management practices and fluctuations in purple nutsedge populations.

Type
Weed Biology and Ecology
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Agronomy, University of Nebraska-Lincoln, Lincoln, NE 68583-0915

References

Literature Cited

Addiscott, T., Smith, J., and Bradbury, N. 1995. Critical evaluation of models and their parameters. J. Environ. Qual. 24: 803807.CrossRefGoogle Scholar
Bir, S. S., Chatha, G. S., and Sidhu, M. 1992. Intraspecific variation in Cyperaceae from Punjab plain, India. Willdenowia 22: 133142.Google Scholar
Bryson, C. T., Hanks, J. E., and Wills, G. D. 1994. Purple nutsedge (Cyperus rotundus) control in reduced tillage cotton (Gossypium hirsutum L.) with low-volume technology. Weed Technol. 8: 2831.CrossRefGoogle Scholar
Caswell, H. 1989. Matrix Population Models: Construction, Analysis, and Interpretation. Sunderland, Great Britain: Sinaur, pp. 524.Google Scholar
Chavez, R. C. and Moody, K. 1986. Ecotypic variations in Cyperus rotundus . Biotropica (Spec. Publ.) 24: 123136.Google Scholar
Cheema, P., Bir, S. S., and Sidhu, M. K. 1992. Chromosomal variation in Cyperus rotundus from northwest India. Nucleus (Calcutta) 35: 8386.Google Scholar
Cousens, R. 1995. Can we determine the intrinsic dynamics of real plant populations? Funct. Ecol. 9: 1520.CrossRefGoogle Scholar
Cousens, R. Cussans, G. W., and Wilson, B. J. 1987. Modeling weed populations in cereals. Rev. Weed Sci. 3: 93112.Google Scholar
Cousens, R. and Mortimer, M. 1995. Dynamics of Weed Populations. Cambridge, Great Britain: Cambridge University Press. 332 p.CrossRefGoogle Scholar
Crawley, M. J. and May, R. M. 1987. Population dynamics and plant community structure: competition between annuals and perennials. J. Theor. Biol. 125: 475489.CrossRefGoogle Scholar
Derr, J. F. and Wilcut, J. W. 1993. Control of yellow and purple nutsedges (Cyperus esculentus and C. rotundus) in nursery crops. Weed Technol. 7: 112117.CrossRefGoogle Scholar
Gonzalez-Andujar, J. L. and Fernandez-Quintanilla, C. 1991. Modeling the population dynamics of Avena sterilis under dry-land cereal cropping systems. J. Appl. Ecol. 28: 1627.CrossRefGoogle Scholar
Grichar, W. J., Nester, P. R., and Colburn, A. E. 1992. Nutsedge (Cyperus spp.) control in peanuts (Arachis hypogaea) with imazethapyr. Weed Technol. 6: 396400.CrossRefGoogle Scholar
Hauser, E. W. 1962a. Establishment of nutsedge from space planted tubers. Weeds 10: 209212.CrossRefGoogle Scholar
Hauser, E. W. 1962b. Development of purple nutsedge under field conditions. Weeds 10: 315321.CrossRefGoogle Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds, Distribution and Biology. Honolulu: The University Press of Hawaii, pp. 824.Google Scholar
Holt, J. S. 1987. Yellow and purple nutsedge: California distribution, biotypes and seed production. Pages 8792 in Proceedings, 39th Annual California Weed Conference. El Macero, CA: California Weed Science Society.Google Scholar
Horowitz, M. 1972. Growth, tuber formation and spread of Cyperus rotundus L. from single tubers. Weed Res. 12: 348363.Google Scholar
Jordan, N., Mortensen, D. A., Prenzlow, D. M., and Cox, K. C. 1995. Simulation analysis of crop rotation effects on weed seedbanks. Am. J. Bot. 82: 390398.CrossRefGoogle Scholar
Justice, O. L. and Whitehead, M. D. 1946. Seed production, viability, and dormancy in the nutgrasses Cyperus rotundus L. and Cyperus esculentus L. J. Agric. Res. 73: 303318.Google Scholar
Keeley, P. E. 1987. Interferences and interactions of purple and yellow nutsedges (Cyperus rotundus and C. esculentus) with crops. Weed Technol. 1:7481.CrossRefGoogle Scholar
Komai, K. and Tang, C. S. 1989. A chemotype of Cyperus rotundus in Hawaii. Phytochemistry 28: 18831886.CrossRefGoogle Scholar
Kropff, M., Wallinga, J., and Lotz, L.A.P. 1996. Weed population dynamics. Pages 314 in Proceedings of the 2nd International Weed Control Congress. Volume I. Slagelse, Denmark: Department of Weed Control and Pesticide Ecology.Google Scholar
Kvålseth, T. O. 1985. Cautionary note about R2 . Am. Stat. 39: 279285.Google Scholar
Magalhães, A. C. 1967. Effect of light on purple nutsedge growth, Cyperus rotundus L. (Observações sǒbre o efeito de luz no crescimento da tiririca, Cyperus rotundus L.). Bragantia 26: 131142.Google Scholar
Maxwell, B. D., Wilson, M. V., and Radosevich, S. R. 1988. Population modeling approach for evaluating leafy spurge (Euphorbia esula) development and control. Weed Technol. 2: 132138.CrossRefGoogle Scholar
Neeser, C., Agüero, R., and Swanton, C. J. 1997a. Incident photosynthetically active radiation as a basis for integrated management of purple nutsedge (Cyperus rotundus) . Weed Sci. 45: 777783.CrossRefGoogle Scholar
Neeser, C, Agüero, R., and Swanton, C. J. 1997b. Survival and dormancy of purple nutsedge (Cyperus rotundus) tubers. Weed Sci. 45: 784790.CrossRefGoogle Scholar
Obrigawitch, T, Abernathy, J. R., and Gibson, J. R. 1980. Response of yellow nutsedge (Cyperus esculentus) and purple nutsedge (C. rotundus) to metolachlor. Weed Sci. 28: 708715.CrossRefGoogle Scholar
Okafor, L. I. and DeDatta, S. K. 1976. Competition in upland rice and purple nutsedge for nitrogen, moisture, and light. Weed Sci. 24,4346.CrossRefGoogle Scholar
Patterson, D. T. 1982. Shading responses of purple and yellow nutsedges (Cyperus rotundus and C. esculentus) . Weed Sci. 30: 2530.CrossRefGoogle Scholar
Rao, J. S. 1968. Studies on the development of tubers in nutgrass and their starch content at different depth of soil. Madras Agric. J. 55: 1823.Google Scholar
Sagar, G. R. and Mortimer, A. M. 1976. An approach to the study of the population dynamics of plants with special reference to weeds. Ann. Appl. Biol. 1: 147.Google Scholar
Siriwardana, G. and Nishimoto, R. K. 1987. Propagules of purple nutsedge (Cyperus rotundus) in soil. Weed Technol. 1: 217220.CrossRefGoogle Scholar
Thrall, P. H., Pacala, S. W., and Silander, J. A. 1989. Oscillatory dynamics in populations of an annual weed species Abutilon theophrasti . J. Ecol. 77: 11351149.CrossRefGoogle Scholar
William, R. D. and Warren, G. F. 1975. Competition between purple nutsedge and vegetables. Weed Sci. 23: 317323.CrossRefGoogle Scholar
Zwerger, P. and Hurle, K. 1989. Studies on the relative importance of individual population dynamics parameters for the development of weed infestation. (Untersuchungen zur relativen Bedeutung einzelner populations dynamischer Parameter für die Entwicklung der Verunkrautung.) Z. Pflanzenkr. Pflanzenschutz 96: 346352.Google Scholar