Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T20:39:42.302Z Has data issue: false hasContentIssue false

Postdispersal Loss of Important Arable Weed Seeds in the Midsouthern United States

Published online by Cambridge University Press:  20 January 2017

Muthukumar V. Bagavathiannan*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
*
Corresponding author's E-mail: muthu@uark.edu

Abstract

Postdispersal processes play an important role in the regulation of weed population dynamics. Experiments were conducted at two locations in Arkansas to understand postdispersal loss of five arable weed species important to this region—barnyardgrass, johnsongrass, pitted morningglory, Palmer amaranth, and red rice—between seed dispersal in autumn and the production of fresh seeds the subsequent autumn. Total seed loss through predation, decay, germination (fatal or successful), and loss in viability was estimated, and the influences of residue level and seed burial depth (near ground vs. 5 cm deep) were also examined. On average, the active (i.e., viable) seedbank proportion in spring (5 mo after dispersal) ranged from 8 to 11% (barnyardgrass), 10 to 11% (johnsongrass), 20 to 23% (pitted morningglory), 4 to 6% (Palmer amaranth), and 5 to 10% (red rice) across the two locations. At 1 yr after dispersal, 0.7 to 1.5% of barnyardgrass, 7 to 8% of johnsongrass, 5 to 9% of pitted morningglory, about 1.5% of Palmer amaranth, and 0.2 to 0.7% of red rice were part of the active seedbank for the two locations. There was no evidence to suggest that establishing a vegetation cover (such as a rye cover crop) after harvest of the main crop could accelerate seed predation. Burial depth did not influence seed decay, but most (45 [pitted morningglory] to 99% [Palmer amaranth]) of the seeds retrieved from the predator feeding stations were found buried in the soil substrate, and thus, not available for most predator species. This suggests that practices that allow weed seeds to lie on the soil surface (such as no-till planting in autumn) are highly valuable in encouraging seed predation. The high levels of seed loss observed in this study indicate that seedbank management should be a vital component of integrated weed management strategies.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bagavathiannan, M. V. and Norsworthy, J. K. 2012. Late-season seed production in arable weed communities: management implications. Weed Sci. 60:325334.Google Scholar
Bagavathiannan, M. V., Norsworthy, J. K., Smith, K. L., and Neve, P. 2013. Modeling the evolution of glyphosate resistance in barnyardgrass (Echinochloa crus-galli) in cotton-based production systems of the midsouthern United States. Weed Technol. DOI: 10.1614/WT-D-13-00013.1.CrossRefGoogle Scholar
Baskin, C. C. and Baskin, J. M. 1998. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. New York Academic. 666 p.Google Scholar
Bridgemohan, P., Brathwaite, R. A. I., and McDavid, C. R. 1991. Seed survival and patterns of seedling emergence studies of Rottboellia cochinchinensis (Lour.) W.D. Clayton in cultivated soils. Weed Res. 31:265272.CrossRefGoogle Scholar
Brust, G. E. and House, G. J. 1988. Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems. Am. J. Altern. Agric. 3:1925.CrossRefGoogle Scholar
Burnside, O. C., Wilson, R. G., Weisberg, S., and Hubbard, K. G. 1996. Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci. 44:7486.Google Scholar
Cardina, J., Norquay, H. M., Stinner, B. R., and McCartney, D. A. 1996. Postdispersal predation of velvetleaf (Abutilon theophrasti) seeds. Weed Sci. 44:534539.Google Scholar
Chambers, J. C. and MacMahon, J. A. 1994. A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annu. Rev. Ecol. Syst. 25:263292.CrossRefGoogle Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006. Influence of environmental factors on seed germination and seedling emergence of rigid ryegrass (Lolium rigidum). Weed Sci. 54:10041012.Google Scholar
Chee-Sanford, J. and Fu, X. 2010. Investigating the role of microorganisms in soil seed bank management. Pages 257266 in Mendez-Vilas, A., ed. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Badajoz, Spain Formatex Research.Google Scholar
Colosi, J. C., Cavers, P. B., and Bough, M. A. 1988. Dormancy and survival in buried seeds of proso millet (Panicum miliaceum). Can. J. Bot. 66:161168.CrossRefGoogle Scholar
Cromar, H. E., Murphy, S. D., and Swanton, C. J. 1999. Influence of tillage and crop residue on postdispersal predation of weed seeds. Weed Sci. 47:184194.CrossRefGoogle Scholar
Davis, A. S. and Renner, K. A. 2007. Influence of seed depth and pathogens on fatal germination of velvetleaf (Abutilon theophrasti) and giant foxtail (Setaria faberi). Weed Sci. 55:3035.Google Scholar
Davis, A. S., Cardina, J., Forcella, F., Johnson, G. A., Kegode, G., Lindquist, J. L., Luschei, E. C., Renner, K. A., Sprague, C. L., and Williams, M. M. 2005. Environmental factors affecting seed persistence of 13 annual weeds across the U.S. Corn Belt. Weed Sci. 53:860868.CrossRefGoogle Scholar
Davis, A. S., Dixon, P. M., and Liebman, M. 2004. Using matrix models to determine cropping system effects on annual weed demography. Ecol. Appl. 14:655668.CrossRefGoogle Scholar
Dell'Aquila, A. 1994. Wheat seed ageing and embryo protein degradation. Seed Sci. Res. 4:293298.Google Scholar
Egley, G. H. and Chandler, J. M. 1978. Germination and viability of weed seeds after 2.5 years in a 50-year buried seed study. Weed Sci. 26:230239.Google Scholar
Forcella, F. 2003. Debiting the seedbank: priorities and predictions. Asp. Appl. Biol. 69:151162.Google Scholar
Forget, P. M. 1996. Removal of seeds of Carapa procera (Meliaceae) by rodents and their fate in rainforest in French Guiana. J. Trop. Ecol. 12:751761.CrossRefGoogle Scholar
Franzluebbers, A. J., Haney, R. L., Honeycutt, C. W., Arshad, M. A., Schomberg, H. H., and Hons, F. M. 2001. Climatic influences on active fractions of soil organic matter. Soil Biol. Biochem. 33:1031111.CrossRefGoogle Scholar
Jorgensen, H. B. and Toft, S. 1997. Food preference, diet dependent fecundity and larval development in Harpalus rufipes (Coleoptera: Carabidae). Pedobiologia. 41:307315.Google Scholar
Gallandt, E. R. 2005. Experimental substrate affects rate of seed removal in assays of invertebrate seed predation. Weed Technol. 19:481485.CrossRefGoogle Scholar
Gallandt, E. R. 2006. How can we target the weed seedbank? Weed Sci. 54:588596.Google Scholar
Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52:104145.Google Scholar
Harper, J. L. 1977. Population Biology of Plants. London Academic. 922 p.Google Scholar
Harrison, S. K., Regnier, E. E., and Schmoll, J. T. 2003. Postdispersal predation of giant ragweed (Ambrosia trifida) seed in no-tillage corn. Weed Sci. 51:955964.Google Scholar
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Harrison, J. M. 2007. Seed size and burial effects on giant ragweed (Ambrosia trifida) emergence and seed demise. Weed Sci. 55:1622.CrossRefGoogle Scholar
Honek, A., Martinkova, Z., Saska, P., and Koprdova, S. 2009. Role of post-dispersal seed and seedling predation in establishment of dandelion (Taraxacum agg.) plants. Agric. Ecosyst. Environ. 134:126135.Google Scholar
Jacob, H. S., Minkey, D. M., Gallagher, R. S., and Borger, C. P. 2006. Variation in postdispersal weed seed predation in a crop field. Weed Sci. 54:148155.CrossRefGoogle Scholar
Joe, H. and Zhu, R. 2005. Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution. Biometrical J. 47:19229.CrossRefGoogle ScholarPubMed
Kaewnaree, P., Vichitphan, S., Klanrit, P., Siri, B., and Vichitphan, K. 2011. Effect of accelerated aging process on seed quality and biochemical changes in sweet pepper (Capsicum annuum Linn.) seeds. Biotechnology. 10:175182.CrossRefGoogle Scholar
Kerter, S. T., Geneve, R. L., and Houtz, R. L. 1997. Priming and accelerated aging affect L-isoaspartyl methyltransferase activity in tomato (Lycopersicon esculentum Mill.) seed. J. Exp. Bot. 48:943949.Google Scholar
Kremer, R. J. 1993. Management of weed seed banks with microorganisms. Ecol. Appl. 3:4252.Google Scholar
LaCroix, L. J. and Staniforth, D. W. 1964. Seed dormancy in velvetleaf. Weeds. 12:171174.CrossRefGoogle Scholar
Landis, D. A. and Marino, P. C. 1999. Landscape structure and extra-field processes: impact on management of pests and beneficials. Pages 79104 in Ruberson, J., ed. Handbook of Pest Management. New York Marcel Dekker.Google Scholar
Levey, D. J. and Bryne, M. M. 1993. Complex ant–plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology. 74:18021812.CrossRefGoogle Scholar
Liebman, M., Mohler, C. L., and Staver, C. P. 2001. Ecological management of agricultural weeds. New York Cambridge University Press. 532 p.CrossRefGoogle Scholar
Marinari, S., Masciandaro, G., Ceccanti, B., and Grego, S. 2000. Influence of organic and mineral fertilizers on soil biological and physical properties. Bioresour. Technol. 72:917.CrossRefGoogle Scholar
Marino, P. C., Westerman, P. R., Pinkert, C., and van der Werf, W. 2005. Influence of seed density and aggregation on post-dispersal weed seed predation in cereal fields. Agric. Ecosyst. Environ. 106:1725.CrossRefGoogle Scholar
Meiss, H., Le Lagadec, L., Munier-Jolain, N., Waldhardt, R., and Petit, S. 2010. Weed seed predation increases with vegetation cover in perennial forage crops. Agric. Ecosyst. Environ. 138:1016.CrossRefGoogle Scholar
Menalled, F. D., Marino, P. C., Renner, K. A., and Landis, D. A. 2000. Post-dispersal weed seed predation in Michigan crop fields as a function of agricultural landscape structure. Agric. Ecosyst. Environ. 77:193202.CrossRefGoogle Scholar
Neve, P., Norsworthy, J. K., Smith, K. L., and Zelaya, I. A. 2011. Modelling evolution and management of glyphosate resistance in Amaranthus palmeri . Weed Res. 51:99112.Google Scholar
Noldin, J. A., Chandler, J. M., and McCauley, G. N. 2006. Seed longevity of red rice ecotypes buried in soil. Planta Daninha. 24:611620.CrossRefGoogle Scholar
Norsworthy, J. K., Bond, J., and Scott, R. 2013. Weed management practices and needs in Arkansas and Mississippi rice. Weed Technol. DOI 10.1614/WT-D-12-00172.1.CrossRefGoogle Scholar
Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvold, G., Powles, S. B., Burgos, N. R., Witt, W. W., and Barrett, M. 2012. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. 60(Suppl. 1):3162.CrossRefGoogle Scholar
O'Rourke, M. E., Heggenstaller, A. H., Liebman, M., and Rice, M. E. 2006. Post-dispersal weed seed predation by invertebrates in conventional and low-external-input crop rotation systems. Agric. Ecosyst. Environ. 116:280288.Google Scholar
Perucci, P. 1990. Effect on the addition of municipal solid-waste compost on microbial biomass and enzyme activities. Biol. Fertil. Soils. 10:221226.CrossRefGoogle Scholar
Peters, J. 2000. Tetrazolium Testing Handbook. Contribution 29 to the Handbook on Seed Testing. Lincoln, NE Association of Official Seed Analysts.Google Scholar
Pieczarka, D. J. and Abawi, G. S. 1978. Effect of interaction between Fusarium, Pythium, and Rhizoctonia on severity of bean root rot. Phytopathology. 68:403408.CrossRefGoogle Scholar
Puricelli, E., Faccini, D., Oriolo, G., and Sabbatini, M. R. 2005. Seed survival and predation of Anoda cristata in soyabean crops. Weed Res. 45:477482.Google Scholar
Reichman, O. J. 1979. Desert granivore foraging and its impact on seed densities and distributions. Ecology. 60:10851092.CrossRefGoogle Scholar
Riar, D. S., Norsworthy, J. K., Steckel, L. E., Stephenson, D. O. IV, Eubank, T. W., and Scott, R. C. 2013. Assessment of weed management practices and problem weeds in midsouth U.S. soybean: a consultant's perspective. Weed Technol. 27:612622.CrossRefGoogle Scholar
Roberts, E. H. 1972. Storage environment and the control of viability. Pages 1458 in Roberts, E. H., ed. Viability of Seeds. Houten, Netherlands Springer.Google Scholar
Saska, P., van der Werf, W., de Vries, E., and Westerman, P. R. 2008. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of predation on weed seeds. Bull. Entomol. Res. 98:169181.CrossRefGoogle Scholar
Schafer, D. E. and Chilcote, D. O. 1969. Factors influencing persistence and depletion in buried seed populations, 1: a model for analysis of parameters of buried seed persistence and depletion. Crop Sci. 9:417418.Google Scholar
Shearin, A. F., Reberg-Horton, S. C., and Gallandt, E. R. 2008. Cover crop effects on the activity-density of the weed seed predator Harpalus rufipes (Coleoptera: Carabidae). Weed Sci. 56:442450.CrossRefGoogle Scholar
Shuler, R. E., DiTommaso, A., Losey, J. E., and Mohler, C. L. 2008. Post-dispersal weed seed predation is affected by experimental substrate. Weed Sci. 56:889895.CrossRefGoogle Scholar
Spano, C., Buselli, R., Castiglione, M. R., Botteg, S., and Grillia, I. 2006. Rnases and nucleases in embryos and endosperms from naturally aged wheat seeds stored in different conditions. J. Plant Physiol. 164:487495.CrossRefGoogle ScholarPubMed
Spokas, K. and Forcella, F. 2009. Software tools for weed seed germination modeling. Weed Sci. 57:216227.CrossRefGoogle Scholar
Thompson, K. 1992. The functional ecology of soil seed banks. Pages 231258 in Fenner, M., ed. Seeds: the Ecology of Regeneration in Plant Communities. Wallingford, UK CAB International.Google Scholar
Vander Wall, S. B., Kuhn, K. M., and Beck, M. J. 2005. Seed removal, seed predation, and secondary dispersal. Ecology. 86:801806.CrossRefGoogle Scholar
Van Mourik, T. A., Stomph, T. J., and Murdoch, A. J. 2005. Why high seed densities in buried mesh bags may overestimate depletion rates of soil seed banks. J. Appl. Ecol. 42:299305.CrossRefGoogle Scholar
Westerman, P. R., Borza, J. K., Andjelkovic, J., Liebman, M., and Danielson, B. 2008. Density-dependent predation of weed seeds in maize fields. J. Appl. Ecol. 45:16121620.Google Scholar
Westerman, P. R., Dixon, P. M., and Liebman, M. 2009. Burial rates of surrogate seeds in arable fields. Weed Res. 49:142152.CrossRefGoogle Scholar
Westerman, P. R., Liebman, M., Menalled, F. D., Heggenstaller, A. H., Hartzler, R. G., and Dixon, P. M. 2005. Are many little hammers effective? velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci. 53:382392.Google Scholar
Westerman, P. R., Wes, J. S., Kropff, K. J., and Van Der Werf, W. 2003. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 40:824836.CrossRefGoogle Scholar
White, S. S., Renner, K. A., Menalled, F. D., and Landis, D. A. 2007. Feeding preferences of weed seed predators and effects on weed emergence. Weed Sci. 55:606612.Google Scholar