Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T01:30:25.631Z Has data issue: false hasContentIssue false

The Critical Period of Bengal Dayflower (Commelina Bengalensis) Control in Peanut

Published online by Cambridge University Press:  20 January 2017

Theodore M. Webster*
Affiliation:
Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA 31794
Wilson H. Faircloth
Affiliation:
National Peanut Laboratory, USDA-ARS, Dawson, GA 39842
J. Timothy Flanders
Affiliation:
Berrien County Extension Service, University of Georgia, Nashville, GA 31639
Eric P. Prostko
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
Timothy L. Grey
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
*
Corresponding author's Email: Ted.Webster@usda.gov

Abstract

Bengal dayflower (also known as tropical spiderwort) is one of the most troublesome weeds in peanut in Georgia, United States. Field studies conducted in 2004 and 2005 evaluated the relationship between the duration of Bengal dayflower interference and peanut yield in an effort to optimize the timing of weed control. In 2004, the critical period of weed control (CPWC) necessary to avoid greater than 5% peanut yield loss was between 316 and 607 growing degree days (GDD), which corresponded to an interval between June 8 and July 2. In 2005, the CPWC ranged from 185 to 547 GDD, an interval between May 30 and July 3. Maximum yield loss in 2005 from season-long interference of Bengal dayflower was 51%. In 2004, production of peanut pods was eliminated by interference with Bengal dayflower for the initial 6 wk (495 GDD) of the growing season. Robust Bengal dayflower growth in 2004 shaded the peanut crop, likely intercepting fungicide applications and causing a reduction in peanut yield. Therefore, the competitive effects of Bengal dayflower are likely complicated with the activity of plant pathogens. In spite of higher Bengal dayflower population densities, greater Bengal dayflower growth, and greater peanut yield losses in 2004 than in 2005, the CPWC was a relatively similar 4-wk period that ended during the first week of July, for peanut that was planted in the first week of May.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahanchede, A. 1996. Agronomic impacts of the dispersal of two morphological types of Commelina Bengalensis L. in Benin. Pages 7582. in Dijon, France Proceedings of the 10th International Symposium on the Biology of Weeds.Google Scholar
Allen, J. C. 1976. A modified sine wave method for calculating degree days. Environ. Entomol. 5:388396.CrossRefGoogle Scholar
Baziramakenga, R. and Leroux, G. D. 1994. Critical period of quackgrass (Elytrigia repens) removal in potatoes (Solanum tuberosum). Weed Sci. 42:528533.Google Scholar
Brecke, B. J., Stephenson, D. O., and Hutto, K. 2005. Impact of tillage and herbicides on tropical spiderwort. in Proceeding of the Tropical Spiderwort Symposium, Tifton, GA, November 29, 2005. http://www.cropsoil.uga.edu/weedsci/tsw2005/index.html. Accessed: February 14, 2007.Google Scholar
Bridges, D. C., Brecke, B. J., and Barbour, J. C. 1992. Wild poinsettia (Euphorbia heterophylla) interference with peanut (Arachis hypogaea). Weed Sci. 40:3742.Google Scholar
Buchanan, G. A. and Hauser, E. W. 1980. Influence of row spacing on competitiveness and yield of peanuts (Arachis hypogaea). Weed Sci. 28:401409.Google Scholar
Buchanan, G. A., Hauser, E. W., Ethridge, W. J., and Cecil, S. R. 1976. Competition of Florida beggarweed and sicklepod with peanuts. II. Effects of cultivation, weeds, and SADH. Weed Sci. 24:2939.CrossRefGoogle Scholar
Burnside, O. C., Wiens, M. J., Holder, B. J., Weisberg, S., Ristau, E. A., Johnson, M. M., and Cameron, J. H. 1998. Critical periods for weed control in dry beans (Phaseolus vulgaris). Weed Sci. 46:301306.CrossRefGoogle Scholar
Chivinge, O. A. and Kawisi, M. 1990. Effects of intra- and inter-specific competition on the growth and development of wandering jew (Commelina Bengalensis L.) and groundnuts (Arachis hypogaea L). Zimb. J. Agric. Res. 28:7582.Google Scholar
Culbreath, A. K. 2007. University of Georgia: Tomato Spotted Wilt Virus. http://www.tomatospottedwiltinfo.org/peanut/default.htm. Accessed: February 26, 2007.Google Scholar
Culpepper, A. S., Flanders, J. T., York, A. C., and Webster, T. M. 2004. Tropical spiderwort (Commelina Bengalensis) control in glyphosate-resistant cotton. Weed Technol. 18:432436.Google Scholar
Davis, R. F., Webster, T. M., and Brenneman, T. B. 2006. Host status of tropical spiderwort (Commelina Bengalensis) for nematodes. Weed Sci. 54:11371141.Google Scholar
Desaeger, J. and Rao, M. R. 2000. Parasitic nematode populations in natural fallows and improved cover crops and their effects on subsequent crops in Kenya. Field Crops Res. 65:4156.CrossRefGoogle Scholar
Earl, H. J., Ferrell, J. A., Vencill, W. K., van Iersel, M. W., and Czarnota, M. A. 2004. Effects of three herbicides on whole-plant carbon fixation and water use by yellow nutsedge (Cyperus esculentus). Weed Sci. 52:213216.Google Scholar
Farris, R. L., Gray, C. J., Murray, D. S., and Verhalen, L. M. 2005. Time of removal of crownbeard (Verbesina encelioides) on peanut yield. Weed Technol. 19:380384.Google Scholar
Ferrell, J. A., Earl, H. J., and Vencill, W. K. 2003. The effect of selected herbicides on CO2 assimilation, chlorophyll fluorescence, and stomatal conductance in johnsongrass (Sorghum halepense L). Weed Sci. 51:2831.Google Scholar
Ferrell, J. A., Earl, H. J., and Vencill, W. K. 2004. Duration of yellow nutsedge (Cyperus esculentus) competitiveness after herbicide treatment. Weed Sci. 52:2427.Google Scholar
Flanders, J. T. 2005. Tropical spiderwort: perspectives from a confused county agent. in Proceeding of the Tropical Spiderwort Symposium, Tifton, GA, November 29, 2005. http://www.cropsoil.uga.edu/weedsci/tsw2005/index.html. Accessed: February 14, 2007.Google Scholar
Forcella, F. 1997. My view. Weed Sci. 45:327–327.Google Scholar
Gonzalez, C. B. and Haddad, C. R. B. 1995. Light and temperature effects on flowering and seed germination of Commelina Bengalensis L. Arq. Biol. Tecnol. 38:651659.Google Scholar
Hackett, N. M., Murray, D. S., and Weeks, D. L. 1987. Interference of horsenettle (Solanum carolinense) with peanuts (Arachis hypogaea). Weed Sci. 35:780784.Google Scholar
Halford, C., Hamill, A. S., Zhang, J., and Doucet, C. 2001. Critical period of weed control in no-till soybean (Glycine max) and corn (Zea mays). Weed Technol. 15:737744.Google Scholar
Harker, K. N., Blackshaw, R. E., and Clayton, G. W. 2001. Timing weed removal in field pea (Pisum sativum). Weed Technol. 15:277283.Google Scholar
Hauser, E. W., Buchanan, G. A., and Ethredge, W. J. 1975. Competition of Florida beggarweed and sicklepod with peanuts. I. Effects of periods of weed-free maintenance or weed competition. Weed Sci. 23:368372.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu, HI University Press of Hawaii.Google Scholar
Hoogenboom, G. 2006. Georgia automated environmental monitoring network. Griffin, GA University of Georgia http://www.Georgiaweather.net. Accessed: April 24, 2006.Google Scholar
Kaul, V., Sharma, N., and Koul, A. K. 2002. Reproductive effort and sex allocation strategy in Commelina Bengalensis L., a common monsoon weed. Bot. J. Linn. Soc. 140:403413.Google Scholar
Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci. 50:773786.Google Scholar
Knezevic, S. Z., Evans, S. P., and Mainz, M. 2003. Row spacing influences the critical timing for weed removal in soybean (Glycine max). Weed Technol. 17:666673.CrossRefGoogle Scholar
Kucharek, T. A., Purcifull, D. E., and Christie, R. G. 1998. The association of severe epidemics of cucumber mosaic in commercial fields of pepper and tobacco in north Florida with inoculum in Commelina Bengalensis and C. communis . Plant Dis. 82:1172.Google Scholar
Lopez-Ovejero, R. F., Garcia, A. G. Y., de Carvalho, S. J. P., Christoffoleti, P. J., Neto, D. D., Martins, F., and Nicolai, M. 2005. Using thermal units for estimating critical period of weed competition in off-season maize crop. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. 40:111.Google ScholarPubMed
Main, C. L., Mueller, T. C., Hayes, R. M., and Wilkerson, J. B. 2004. Response of selected horseweed (Conyza canadensis (L.) cronq.) populations to glyphosate. J. Agric. Food Chem. 52:879883.Google Scholar
Martin, S. G., Van Acker, R. C., and Friesen, L. F. 2001. Critical period of weed control in spring canola. Weed Sci. 49:326333.Google Scholar
Mbwana, A. S. S., Waudo, S. W., and Seshu-Reddy, K. V. 1995. Host-range of the lesion nematode, Pratylenchus goodeyi, commonly found in highland bananas of East Africa. Int. J. Pest Manag. 41:4649.Google Scholar
Mueller, T. C., Mitchell, P. D., Young, B. G., and Culpepper, A. S. 2005. Proactive versus reactive management of glyphosate-resistant or -tolerant weeds. Weed Technol. 19:924933.CrossRefGoogle Scholar
Narendra, D. V. and Rao, V. G. 1973. New leaf-spot disease of Commelina, Commelina Bengalensis L (F- Commelinaceae). Curr. Sci. 42:180.Google Scholar
Ngouajio, M., Foko, J., and Fouejio, D. 1997. The critical period of weed control in common bean (Phaseolus vulgaris L.) in Cameroon. Crop Prot. 16:127133.Google Scholar
Norsworthy, J. K. and Oliveira, M. J. 2004. Comparison of the critical period for weed control in wide- and narrow-row corn. Weed Sci. 52:802807.Google Scholar
Paulo, E. M., Kasai, F. S., and Cavichioli, J. C. 2001. Effects of weed competition periods on peanut: II. Wet season crop. Bragantia. 60:2733.Google Scholar
Prostko, E. P., Baldwin, J., Beasely, J., Brenneman, T., Brown, S. L., Harris, G., Harrison, K., Kemeratit, B., Smith, N., and Williams, J. 2005a. 2005 Georgia Peanut Update. Tifton, GA University of Georgia Cooperative Extension Service http://commodities.caes.uga.edu/fieldcrops/Peanuts/pu2005/index.htm. Accessed: December 2, 2005).Google Scholar
Prostko, E. P., Culpepper, A. S., Webster, T. M., and Flanders, J. T. 2005b. Tropical spiderwort identification and control in Georgia field crops. Tifton, GA University of Georgia Cooperative Extension Service Bulletin http://pubs.caes.uga.edu/caespubs/pubs/PDF/c884.pdf.Google Scholar
Royal, S. S., Brecke, B. J., and Colvin, D. L. 1997a. Common cocklebur (Xanthium strumarium) interference with peanut (Arachis hypogaea). Weed Sci. 45:3843.Google Scholar
Royal, S. S., Brecke, B. J., Shokes, F. M., and Colvin, D. L. 1997b. Influence of broadleaf weeds on chlorothalonil deposition, foliar disease incidence, and peanut (Arachis hypogaea) yield. Weed Technol. 11:5158.Google Scholar
Spader, V. and Vidal, R. A. 2000. Response curve of Commelina Bengalensis to EPSPS enzyme inhibitory herbicides. Pest. Rev. Tec. Cient. 10:125135.Google Scholar
Viator, R. P., Nuti, R. C., Edmisten, K. L., and Wells, R. 2005. Predicting cotton boll maturation period using degree days and other climatic factors. Agron. J. 97:494499.Google Scholar
Walker, R. H., Wells, L. W., and McGuire, J. A. 1989. Bristly starbur (Acanthospermum hispidum) interference in peanuts (Arachis hypogaea). Weed Sci. 37:196200.Google Scholar
Walker, S. R. and Evenson, J. P. 1985a. Biology of Commelina Bengalensis L. in south-eastern Queensland. 1. Growth, development and seed production. Weed Res. 25:239244.Google Scholar
Walker, S. R. and Evenson, J. P. 1985b. Biology of Commelina Bengalensis L. in south-eastern Queensland. 2. Seed dormancy, germination and emergence. Weed Res. 25:245250.Google Scholar
Webster, T. M. 2005. Weed survey—southern states: broadleaf crops subsection. Pages 291306. in Vencill, W.K., ed Proceedings of the Southern Weed Science Society. Volume 58.Google Scholar
Webster, T. M., Burton, M. G., Culpepper, A. S., Flanders, J. T., Grey, T. L., and York, A. C. 2006. Tropical spiderwort (Commelina Bengalensis) control and emergence patterns in preemergence herbicide systems. J. Cotton Sci. 10:6875.Google Scholar
Webster, T. M., Burton, M. G., Culpepper, A. S., York, A. C., and Prostko, E. P. 2005a. Tropical spiderwort (Commelina Bengalensis): a tropical invader threatens agroecosystems of the southern United States. Weed Technol. 19:501508.CrossRefGoogle Scholar
Webster, T. M., Culpepper, A. S., Flanders, J. T., and Grey, T. L. 2005b. Planting date affects critical tropical spiderwort (Commelina Bengalensis)-free interval in cotton. Pages 28422843. in Grey, T.L., ed Proceedings of the Beltwide Cotton Conference, Cotton Weed Science Research Conference, New Orleans.Google Scholar
Webster, T. M., Culpepper, A. S., Grey, T. L., Flanders, J. T., Burton, M. G., and York, A. C. 2004. Emergence patterns of tropical spiderwort (Commelina Bengalensis) in cotton. Proc. South. Weed Sci. Soc. 57:228229.Google Scholar
Wilson, A. K. 1981. Commelinaceae—a review of the distribution, biology and control of the important weeds belonging to this family. Tropical Pest Manag. 27:405418.Google Scholar
Zhang, W., Webster, E. P., Lanclos, D. Y., and Geaghan, J. P. 2003. Effect of weed interference duration and weed-free period on glufosinate-resistant rice (Oryza sativa). Weed Technol. 17:876880.Google Scholar