Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T03:57:32.371Z Has data issue: false hasContentIssue false

Herbicidal Metabolites from a Soil-Dwelling Fungus (Scopulariopis brumptii)

Published online by Cambridge University Press:  12 June 2017

Jamin Huang
Affiliation:
Plant Biol., Rhone Poulenc Ag Co., Research Triangle Park, NC 27709
Alan R. Putnam
Affiliation:
Dep. Hortic. and Pestic. Res. Ctr., Michigan State Univ., East Lansing, MI 48824
Georgina M. Werner
Affiliation:
Plant Biol., Rhone Poulenc Ag Co., Research Triangle Park, NC 27709
Saroj K. Mishra
Affiliation:
Dep. Hortic. and Pestic. Res. Ctr., Michigan State Univ., East Lansing, MI 48824
Curt Whitenack
Affiliation:
Dep. Hortic. and Pestic. Res. Ctr., Michigan State Univ., East Lansing, MI 48824

Abstract

The fungus Scopulariopis brumptii Salvanet-Duval (MSU 42018) was isolated from a soil sample collected from the rhizosphere of a potted asparagus plant. When cultured 7 days in A-9 broth medium, the organism produced compounds phytotoxic to seeding dicotyledonous weeds (via foliar application) and to Chlamydomonas reinhardtii Dangeard. Three herbicidal metabolites, 3-hydroxybenzyl alcohol, 2-methylhydroquinone, and (+)-epiepoformin, were isolated by column and thin-layer chromatography (TLC) and structures confirmed by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic reasonance spectroscopy (NMR), and mass spectrometry (MS). Of the three compounds, (+)-epiepoformin was the most active, providing complete control of redroot pigweed and 88% control of white mustard when applied at 4.4 kg/ha.

Type
Special Topics
Copyright
Copyright © 1989 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Barron, G. L. 1968. The genera of hyphomycetes from soil. Pages 275279. Williams and Wilkins, Baltimore.Google Scholar
2. Basalkevich, E. D., Cherepenko, T. I., Vysotskii, N. N., Shapovalenko, V. F., and Svishchuk, A. A. 1971. Synthesis and fungicidal activity of methylated hydroquinones. Fiziol. Aktiv. Veshchestva Respub. Mezhvedom. Sb. 3, 174180.Google Scholar
3. Bottger, G. T., Yerington, A. P., and Gertler, S. I. 1951. Synthetic organic compounds as insecticides, U.S. Dep. Agric. Bur. Entomol. and Plant Quarantine E-826. 23 pp.Google Scholar
4. Carey, S. T. and Nair, M.S.R. 1979. Metabolites of pyrenomycetes. X. Isolation of P-toluquinone and toluquinol from Nectria erubescens . J. Nat. Prod. 42:231.Google Scholar
5. Carlson, S. D. 1967. Paraquinone secretion by confused flour beetles after carbon dioxide or nitrogen anesthesia. J. Econ. Entomol. 60:878879.CrossRefGoogle Scholar
6. Cutler, H. G. 1986. Isolating, characterizing, and screening mycotoxins for herbicidal activity. Pages 147170 in Putnam, A. R. and Tang, C. S., eds. The Science of Allelopathy, Wiley-Interscience, New York.Google Scholar
7. DeFrank, J. and Putnam, A. R. 1985. Screening procedures to identify soil-borne actinomycetes that can produce herbicidal compounds. Weed Sci. 33:271274.Google Scholar
8. Dettner, K. and Schwinger, G. 1982. Defensive secretions of three oxytelinge rove beetles (Coleoptera: Straphylinidae). J. Chem. Ecol. 8:14111412.CrossRefGoogle Scholar
9. Duke, S. O. 1986. Microbially produced phytotoxins as herbicides – a perspective. Pages 287394 in Putnam, A. R. and Tang, C. S., eds. The Science of Allelopathy. Wiley-Interscience, New York.Google Scholar
10. Emmons, C. W., Chapman, H. B., Utz, J. P., and Kwon-Chung, K. J. 1977. Medical Mycology. Lea and Febiger, Philadelphia. Page 540.Google Scholar
11. Englehardt, M., Rapaport, H., and Sokoloff, A. 1965. Odorous secretion of normal and mutant Tribolium confusum . Science 150:632633.Google Scholar
12. Fischer, H. P. and Bellus, D. 1983. Phytotoxicants from microorganisms and related compounds. Pestic. Sci. 14:334346.Google Scholar
13. Heisey, R. M., DeFrank, J., and Putnam, A. R. 1985. A survey of soil microorganisms for herbicidal activity. Pages 337349 in Thompson, A. C., ed. The Chemistry of Allelopathy. ACS Symp. Ser. No. 268.Google Scholar
14. Hess, F. D. 1980. A Chlamydomonas algal bioassay for detecting growth inhibitor herbicides. Weed Sci. 28:515520.Google Scholar
15. Ichihara, A., Kimura, R., Oda, K., Moriyasu, K., and Sakamura, S. 1982. Synthesis of (±)-epoxydon and related natural compounds. Agric. Biol. Chem. 46:18791883.Google Scholar
16. Ichihara, A., Moriyasu, K., and Sakamura, S. 1978. Synthesis of (±)-epoformin (desoxyepoxydon) and (±)-epiepoformin (desoxyepiepoxydon). Agric. Biol. Chem. 42:24212422.Google Scholar
17. Ichikawa, Y. and Tsuruta, H. 1975. Methylhydroquinone insecticides. Japan 75, 107, 126 (8-23-1975).Google Scholar
18. Jarvis, B. B., Pavanasasivam, G., and Bean, G. A. 1985. Mycotoxin production from myrothecium species. Page 227 in Lacey, J., ed. Trichothecenes and Other Mycotoxins. Academic Press, London.Google Scholar
19. Jarvis, B. B. and Yatawara, C. S. 1986. Roritoxins, new macrocyclic trichothecenes from Myrothecium roridum . J. Org. Chem. 61:29062910.CrossRefGoogle Scholar
20. Krepinsky, J. 1961. Chemistry of defensive substances of the bombardier beetle, Brachynus selopeta, B. explodens, B. crepitans. Chem. Listy. 55:719721.Google Scholar
21. Misato, T. 1982. Recent status and future aspects of agricultural antibiotics. Pages 241246 in Takahashi, et al., eds. Pesticide Chemistry: Human Welfare and the Environment. Vol. 2. Natural Products, Pergamon Press, Oxford–New York.Google Scholar
22. Mishra, S. K., Taft, W. H., Putnam, A. R., and Ries, S. K. 1987. Plant growth regulatory metabolites from novel actinomycetes. J. Plant Growth Regul. 6:7584.Google Scholar
23. Nagasawa, H. 1979. Analogues of epoxydon. Bokin Bobai. 7:T221T225.Google Scholar
24. Nagasawa, H., Suzuki, A., and Tamura, S. 1978. Isolation and structure of (+)-desoxyepiepoxydon and (+)-epiepoxydon, phytotoxic fungal metabolites. Agric. Biol. Chem. 42:13031304.Google Scholar
25. Owens, R. G. 1953. Studies on the nature of fungicidal action. II. Chemical constitution of benzenoid and quinonoid compounds in relation to fungi toxicity and inhibition of amino and sulfhydryl-dependent enzymes. Contrib. Boyce Thompson Inst. 17:273282.Google Scholar
26. Questel, D. D. and Gertler, S. I. 1952. Laboratory tests of toxicity of some organic compounds to the European corn borer. Bur. Entomol., Plant Quarantine E-840. 12 pp.Google Scholar
27. Rebstock, M. C. 1964. New metabolite of patulin-producing penicillia. Arch. Biochem. Biophys. 104:156159 (1964).Google Scholar
28. Sager, R. and Granick, S. 1953. Nutritional studies with Chlamydomonas reinhardtii . Ann. N.Y. Acad. Sci. 56:831838.CrossRefGoogle Scholar
29. Scheffer, R. P. 1983. Toxins as chemical determinants of plant disease. Pages 140 in Doly, J. M. and Deverall, B. J., eds. Toxins and Plant Pathogenesis, Academic Press, New York.Google Scholar
30. Scott, A. I. and Yalpani, M. 1967. A mass-spectrometric study of biosynthesis: conversion of deutero-m-cresol in patulin. Chem. Commun. 945.Google Scholar
31. Sequin-Frey, M. and Tamm, C. 1971. Gentisinacetal and chlor-gentisin-alkohol, zwei neve metabolite einer Phoma species. Helv. Chim. Acta 54:851861.CrossRefGoogle Scholar
32. Sekizawa, Y. and Takematau, T. 1983. How to discover new antibiotics for herbicidal use. Pages 261268 in Takahashi, N., Yoshioka, H., Misato, T., and Matsunaka, S., eds. Pesticide Chemistry, Human Welfare and the Environment. Vol. 2. Natural Products, Pergamon Press, Oxford.Google Scholar
33. Sun, H., Chen, Z., Xu, G., and Xu, L. 1982. Quantitative structure-activity relationship of the antibiotic properties of a series of hydroquinones. Xaoxue Xuebao 17:107111.Google Scholar
34. Takeda Chem. Ind. Ltd. 1983. Catechols and hydroquinones as termite-controlling agents. Jap. Patent No. 58, 157, 703.Google Scholar
35. Yamamoto, I., Mizuta, E., Henmi, T., Yamano, T., and Yamatodani, S. 1973. Penicillium claviforme bainier epoformin. J. Takeda Res. Lab. 32:532538.Google Scholar
36. Yoshino, Y., Sato, C., and Maeda, S. 1974. Plant growth regulator. Jap. Patent No. 73, 041, 992.Google Scholar