Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T17:20:57.476Z Has data issue: false hasContentIssue false

Interactions of Herbicides with Photosynthetic Electron Transport

Published online by Cambridge University Press:  12 June 2017

E. Patrick Fuerst
Affiliation:
Dep. Agron. & Soils, Washington State Univ., Pullman, WA 99164-6420
Michael A. Norman
Affiliation:
Dep. Agron. & Soils, Washington State Univ., Pullman, WA 99164-6420

Abstract

The two primary sites of herbicide action in photosynthetic electron transport are the inhibition of photosystem II (PS II) electron transport and diversion of electron flow through photosystem I (PS I). PS II electron transport inhibitors bind to the D1 protein of the PS II reaction center, thus blocking electron transfer to plastoquinone. Inhibition of PS II electron transport prevents the conversion of absorbed light energy into electrochemical energy and results in the production of triplet chlorophyll and singlet oxygen which induce the peroxidation of membrane lipids. PS I electron acceptors probably accept electrons from the iron-sulfur protein, Fa/Fb. The free radical form of the herbicide leads to the production of hydroxyl radicals which cause the peroxidation of lipids. Herbicide-induced lipid peroxidation destroys membrane integrity, leading to cellular disorganization and phototoxicity.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Akhavein, A. A. and Linscott, D. L. 1968. The dipyridylium herbicides, paraquat and diquat. Residue Rev. 23:97145.Google Scholar
2. Anderson, J. M. and Andersson, B. 1988. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends in Biochem. Sci. 13:351355.Google Scholar
3. Andreasson, L. E. and Vaungard, T. 1988. Electron transport in photosystems I and II. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:379411.Google Scholar
4. Babbs, C. F., Pham, J. A., and Coolbaugh, R. C. 1989. Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol. 12671270.Google Scholar
5. Bettini, P., McNally, S., Sevignac, M., Darmency, H., Gasquez, J., and Dron, M. 1987. Atrazine resistance in Chenopodium album . Plant Physiol. 84:14421446.Google Scholar
6. Deisenhofer, J. and Michel, H. 1989. The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis . Science 245:14631473.Google Scholar
7. Dodge, A. D. 1983. Toxic oxygen species and herbicide action. Pages 5966 in Miyamoto, J. and Kearney, P. C., eds. Pesticide Chemistry: Human Welfare and the Environment. Proc. 5th Int. Congr. Pestic. Chem. Pergamon Press, Oxford.Google Scholar
8. Duke, S. O. 1985. Effects of herbicides on nonphotosynthetic processes. Pages 91112 in Weed Physiology. Vol. II. Herbicide Physiology. CRC Press, Boca Raton, FL.Google Scholar
9. Fuerst, E. P., Arntzen, C. J., Pfister, K., and Penner, D. 1986. Herbicide cross-resistance in triazine-resistant biotypes of four species. Weed Sci. 34:344353.Google Scholar
10. Gardner, G. 1989. A stereochemical model for the active site of photosystem II herbicides. Photochem. Photobiol. 49:331336.Google Scholar
11. Golbeck, J. H. 1987. Structure, function and organization of the Photosystem I reaction center complex. Biochim. Biophys. Acta 895:167204.Google Scholar
12. Goodwin, T. W. and Mercer, E. I. 1983. Introduction to Plant Biochemistry. 2nd ed. Pergamon Press, Oxford. 677 pp.Google Scholar
13. Haehnel, W. 1984. Photosynthetic electron transport in higher plants. Annu. Rev. Plant Physiol. 35:659693.Google Scholar
14. Halliwell, B. 1981. Toxic effects of oxygen on plant tissues. Pages 179205 in Chloroplast Metabolism. Oxford Univ. Press, New York.Google Scholar
15. Hirschberg, J., Bleecker, A., Kyle, D. J., and Arntzen, C. J. 1983. The molecular basis of triazine-herbicide resistance in higher-plant chloroplasts. Z. Naturforsch. 39c:412420.Google Scholar
16. Hirschberg, J. and McIntosh, L. 1983. Molecular basis of herbicide resistance in Amaranthus hybridus . Science 222:13461349.Google Scholar
17. Hirschberg, J., Yehuda, A. B., Pecker, I., and Ohad, N. 1987. Mutations resistant to photosystem II herbicides. Pages 336352 in Wettstein, D. V. and Chua, N. H., eds. Plant Molecular Biology. NATA ASI Ser. A: Life Sci. Vol. 140. Plenum Press, New York.Google Scholar
18. Jursinic, P. A. and Pearcy, R. W. 1988. Determination of the rate limiting step for photosynthesis in a nearly isonuclear rapeseed (Brassica napus L.) biotype resistant to atrazine. Plant Physiol. 88:11951200.Google Scholar
19. Kunert, K. J. and Dodge, A. D. 1989. Herbicide-induced radical damage and antioxidative systems. Pages 4563 in Boger, P. and Sandmann, G., eds. Target Sites of Herbicide Action. CRC Press, Boca Raton, FL.Google Scholar
20. Lagoutte, B. and Mathis, P. 1989. The photosystem I reaction center: structure and photochemistry. Photochem. Photobiol. 49:833844.Google Scholar
21. Lewin, R. 1988. Membrane protein holds photosynthetic secrets. Science 242:672673.Google Scholar
22. LeBaron, H. M. and McFarland, J. 1990. Herbicide resistance in weeds and crops: an overview and prognosis. Pages 336352 in: Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. ACS Symp. Ser. 4221, Washington, DC.Google Scholar
23. Mets, L. and Thiel, A. 1989. Biochemistry and genetic control of the photosystem II herbicide target site. Pages 124 in Boger, P. and Sandmann, G., eds. Target Sites of Herbicide Action. CRC Press, Boca Raton, FL.Google Scholar
24. Michel, H. and Deisenhofer, J. 1988. Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry 27:17.Google Scholar
25. Michel, H., Epp, O., and Deisenhofer, J. 1986. Pigment-protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis . EMBO J. 5:24452451.Google Scholar
26. Moreland, D. E. 1980. Mechanisms of action of herbicides. Annu. Rev. Plant Physiol. 31:597638.Google Scholar
27. Parrett, K. G., Mehari, T., Warren, P. G., and Golbeck, J. H. 1989. Purification and properties of the intact P-700 and FX-containing photosystem I core protein. Biochim. Biophys. Acta 973:324332.Google Scholar
28. Pfister, K. and Arntzen, C. J. 1979. The mode of action of photosystem II-specific inhibitors in herbicide-resistant weed biotypes. Z. Naturforsch. 34c:9961009.Google Scholar
29. Polos, E., Laskay, G., Szigeti, Z., Pataki, S., and Lehoczki, E. 1987. Photosynthetic properties and cross-resistance to some urea herbicides of triazine-resistant Conyza canadensis Cronq. (L.). Z. Naturforsch. 42c:783793.Google Scholar
30. Reilly, P. and Nelson, N. 1988. Photosystem I complex. Photosynth. Res. 19:7384.Google Scholar
31. Reith, M. and Straus, N. A. 1987. Nucleotide sequence of the chloroplast gene responsible for triazine resistance in canola. Theor. Appl. Genet. 73:357363.Google Scholar
32. Schonfeld, M., Yaacoby, T., Michael, O., and Rubin, B. 1987. Triazine resistance without reduced vigor in Phalaris paradoxa . Plant Physiol. 83:329333.Google Scholar
33. Schonfeld, M., Yaacoby, T., Yehuda, A. B., Rubin, B., and Hirschberg, J. 1986. Triazine resistance in Phalaris paradoxa: physiological and molecular analyses. Z. Naturforsch. 42c:779782.Google Scholar
34. Shigematsu, Y., Sato, F., and Yamada, Y. 1989. A binding model for phenylurea herbicides based on analysis of a Thr264 mutation in the D-1 protein of tobacco. Pestic. Biochem. Physiol. 35:3341.Google Scholar
35. Sinning, I., Koepke, J., Schiller, B., and Michel, H. 1989. First glance on the three-dimensional structure of the photosynthetic reaction center from a herbicide-resistant Rhodopseudomonas viridis mutant. Z. Naturforsch. 45c:455458.Google Scholar
36. Sinning, I., Michel, H., Mathis, P., and Rutherford, A. W. 1989. Characterization of four herbicide-resistant mutants of Rhodopseudomonas viridis by genetic analysis, electron paramagnetic resonance, and optical spectroscopy. Biochemistry 28:55445553.Google Scholar
37. Smeda, R. J. 1990. The physiological and molecular characterization of atrazine resistance in photoautotrophic potato cells. PhD. Thesis, Purdue Univ. 131 pp.Google Scholar
38. Stowe, A. E. and Holt, J. S. 1988. Comparison of triazine-resistant and -susceptible biotypes of Senecio vulgaris and their F1 hybrids. Plant Physiol. 87:183189.Google Scholar
39. Trebst, A. 1987. The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides of photosystem II. Z. Naturforsch. 42c:742750.Google Scholar
40. Vermaas, W.F.J. 1988. Photosystem II as probed by mutagenesis. Pages 197214 in Stevens, S. E. Jr., and Bryant, D. A., eds. Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models. Am. Soc. Plant Physiol., Rockville, MD.Google Scholar