Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T14:26:23.888Z Has data issue: false hasContentIssue false

Management Options for Multiple Herbicide–Resistant Corn Poppy (Papaver rhoeas) in Spain

Published online by Cambridge University Press:  17 March 2017

Jordi Rey-Caballero
Affiliation:
Researcher, Associate Professor, Full Professor, and Researcher, Spain Department d’Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Alcalde Rovira Roure 191, Lleida, Spain
Aritz Royo-Esnal
Affiliation:
Researcher, Associate Professor, Full Professor, and Researcher, Spain Department d’Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Alcalde Rovira Roure 191, Lleida, Spain
Jordi Recasens
Affiliation:
Researcher, Associate Professor, Full Professor, and Researcher, Spain Department d’Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Alcalde Rovira Roure 191, Lleida, Spain
Ignacio González
Affiliation:
Technical Herbicide Manager, Dow AgroSciences, 28042 Ribera del Loira 4-6, Madrid
Joel Torra*
Affiliation:
Researcher, Associate Professor, Full Professor, and Researcher, Spain Department d’Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Alcalde Rovira Roure 191, Lleida, Spain
*
*Corresponding author’s E-mail: joel@hbj.udl.cat

Abstract

Corn poppy is the most widespread broadleaf weed infesting winter cereals in Europe. Biotypes that are resistant (R) to both 2,4-D and tribenuron-methyl have evolved in recent decades, thus complicating their chemical control. In this study, field experiments at two locations over three seasons were conducted to evaluate the effects of different weed management strategies on corn poppy resistant to 2,4-D and tribenuron-methyl, including crop rotations, delayed sowing and different herbicide programs. After 3 yr, all integrated weed management (IWM) strategies reduced the initial density of corn poppy, although the most successful strategies were those which either included a suitable crop rotation (sunflower or field peas), or had a variation in the herbicide application timing (early POST or combining PRE or early POST and POST). The efficacy of IWM strategies differed between both locations, possibly due to different population dynamics and the genetic basis of herbicide resistance. Integrated management of multiple herbicide–resistant corn poppy is necessary in order to reduce selection pressure by herbicides, mitigate the evolution of new R biotypes, and reduce the weed density in highly infested fields.

Type
Weed Management
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Christopher Preston, University of Adelaide.

References

Literature Cited

Bates, D, Maechler, M, Bolker, B, Walker, S (2014) lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package v. 1. 15 http://CRAN.R project.org/package=lme4. Accessed: January 1, 2014Google Scholar
Beckie, HJ (2006) Herbicide-resistant weeds: management tactics and practices. Weed Technol 20:793814 CrossRefGoogle Scholar
Busi, R, Powles, SB (2013) Cross-resistance to prosulfocarb and triallate in pyroxasulfone-resistant Lolium rigidum . Pest Manag Sci 69:13791384 CrossRefGoogle ScholarPubMed
Cirujeda, A, Recasens, J, Taberner, A (2003) Effect of ploughing and harrowing on a herbicide resistant corn poppy (Papaver rhoeas) population. Biol Agric Hortic 21:231246 CrossRefGoogle Scholar
Cirujeda, A, Recasens, J, Torra, J, Taberner, A (2008) A germination study of herbicide-resistant field poppies in Spain. Agron Sustain Dev 28:207220 CrossRefGoogle Scholar
Cirujeda, A, Taberner, A (2009) Cultural control of herbicide-resistant Lolium rigidum Gaud. populations in winter cereal in Northeastern Spain. Spanish J Agric Res 7:146154 CrossRefGoogle Scholar
Claude, JP, Gabard, J, De Prado, R, Taberner, A (1998) An ALS-resistant population of Papaver rhoeas in Spain. Pages 141147 in Proceedings of the Compte Rendu XVII Conference COLUMA, Journées Internationales Sur la Lutte Contre les Mauvaises Herbes. Montpellier, France: Association Nationale de Protection des Plantes Google Scholar
Délye, C, Pernin, F, Scarabel, L (2011) Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Sci 180:333342 CrossRefGoogle ScholarPubMed
Directive 2009/128/CE. Directive for sustainable use of pesticides. Official Journal of European Union 2009; L309:7186 Google Scholar
Duke, SO (2012) Why have no new herbicide modes of action appeared in recent years? Pest Manag Sci 68:505512 CrossRefGoogle ScholarPubMed
Durán-Prado, M, Osuna, MD, De Prado, R, Franco, AR (2004) Molecular basis of resistance to sulfonylureas in Papaver rhoeas . Pestic Biochem Physiol 79:1017 CrossRefGoogle Scholar
Harker, KN, O’Donovan, JT (2013) Recent weed control, weed management, and integrated weed management. Weed Technol 27:111 CrossRefGoogle Scholar
Harker, KN, O’Donovan, JT, Irvine, RB, Turkington, TK, Clayton, GW (2009) Integrating cropping systems with cultural techniques augments wild oat (Avena fatua) management in barley. Weed Sci 57:326337 CrossRefGoogle Scholar
Liebman, M, Staver, CP (2001) Crop diversification for weed management. Pages 322374 in Liebman M, Mohler CL, Staver CP, eds. Ecological Management of Agricultural Weeds. Cambridge: Cambridge University Press CrossRefGoogle Scholar
Kaloumenos, NS, Adamouli, VN, Dordas, CA, Eleftherohorinos, IG (2011) Corn poppy (Papaver rhoeas) cross-resistance to ALS-inhibiting herbicides. Pest Manag Sci 67:574585 CrossRefGoogle ScholarPubMed
Kaloumenos, NS, Dordas, CA, Diamantidis, GC, Eleftherohorinos, IG (2009) Multiple Pro 197 substitutions in the acetolactate synthase of corn poppy (Papaver rhoeas) Confer resistance to tribenuron. Weed Sci 57:362368 CrossRefGoogle Scholar
Kati, V, Chatzaki, E, Le Core, V, Délye, C (2014) Papaver rhoeas plants with multiple resistance to synthetic auxins and ALS inhibitors. Page 24 in Proceedings of the Herbicide Resistance in Europe: Challenges, Opportunities and Threats. Frankfurt am Main, Germany: EWRS–Herbicide Resistant Working Group Google Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840848 CrossRefGoogle Scholar
Marshall, R, Hull, R, Moss, SR (2010) Target site resistance to ALS inhibiting herbicides in Papaver rhoeas and Stellaria media biotypes from the UK. Weed Res 50:621630 CrossRefGoogle Scholar
Moss, SR, Perryman, SAM, Tatnell, LV (2007) Managing herbicide-resistant blackgrass (Alopecurus myosuroides): theory and practice. Weed Technol 21:300309 CrossRefGoogle Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 CrossRefGoogle Scholar
Oerke, EC (2006) Crop losses to pests. J Agric Sci 144:3143 CrossRefGoogle Scholar
Pinheiro, J, Bates, D, DebRoy, S, Sarkar, D, R Core Team (2014) nlme: Linear and Nonlinear Mixed Effects Models. R Package v. 3. 1117. http://CRAN.R-project.org/package=nlme. Accessed: January 1, 2014Google Scholar
Powles, SB, Bowran, DG (2000) Crop management systems. Pages 287306 in Richardson RG and Richardson FJ, eds. Australian Weed Management Systems. Melbourne, Australia: B. M. Sindel Google Scholar
R Development Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org. Accessed: January 10, 2013Google Scholar
Rey-Caballero, J, Menéndez, J, Giné-Bordonaba, J, Salas, M, Alcántara, R, Torra, J (2016) Unravelling the resistance mechanisms to 2,4-D (2,4-dichlorophenoxyacetic acid) in corn poppy (Papaver rhoeas). Pestic Biochem Physiol 133:6772 CrossRefGoogle ScholarPubMed
Rey-Caballero, J, Menéndez, J, Osuna, MD, Salas, M, Torra, J (in press). Target-site and Non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas. Pestic Biochem PhysiolGoogle Scholar
Seefeldt, SS, Jensen, JE, Fuerst, EP (1995) Log-logistic analysis of herbicide dose–response relationships. Weed Technol 9:218225 CrossRefGoogle Scholar
Taberner, A, Estruch, F, Sanmarti, X (1992) Balance de 50 años de control de malas hierbas. Punto de vista del agricultor/aplicador. Pages 4348 in Proceedings of the Third Spanish Weed Science Congress. Valencia, Spain: Spanish Weed Science Society Google Scholar
Torra, J, Cirujeda, A, Taberner, A, Recasens, J (2010) Evaluation of herbicides to manage herbicide-resistant corn poppy (Papaver rhoeas) in winter cereals. Crop Prot 29:731736 CrossRefGoogle Scholar
Torra, J, Recasens, J (2008) Demography of corn poppy (Papaver rhoeas) in relation to emergence time and crop competition. Weed Sci 56:826833 CrossRefGoogle Scholar
Torra, J, Royo-Esnal, A, Recasens, J (2011) Management of herbicide-resistant Papaver rhoeas in dry land cereal fields. Agron Sustain Dev 31:483490 CrossRefGoogle Scholar
Vencill, WK, Nichols, RL, Webster, TM, Soteres, JK, Mallory-Smith, C, Burgos, NR, Johnson, WG, McClelland, MR (2012) Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci 60:230 CrossRefGoogle Scholar
Zuur, AF, Ieno, EN, Elphick, CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:314 CrossRefGoogle Scholar
Supplementary material: File

Rey-Caballero supplementary material

Rey-Caballero supplementary material 1

Download Rey-Caballero supplementary material(File)
File 654.8 KB