Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T00:55:26.396Z Has data issue: false hasContentIssue false

The Phytotoxic Potential of the Terpenoid Citral on Seedlings and Adult Plants

Published online by Cambridge University Press:  20 January 2017

Elisa Graña
Affiliation:
Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende s/n, 36310-Vigo, Spain
Tamara Sotelo
Affiliation:
Misión Biológica de Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain
Carla Díaz-Tielas
Affiliation:
Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende s/n, 36310-Vigo, Spain
Manuel J. Reigosa
Affiliation:
Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende s/n, 36310-Vigo, Spain
Adela M. Sánchez-Moreiras*
Affiliation:
Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende s/n, 36310-Vigo, Spain
*
Corresponding author's E-mail: adela@uvigo.es

Abstract

Citral is a monoterpene commonly found as volatile component in many different aromatic plants. Although many studies have identified the presence of citral in phytotoxic essential oils, this work determines for the first time the potential herbicidal effect of citral on weeds. The use of citral against weeds and crops resulted in the potential for the management of barnyardgrass, redroot pigweed, and ribwort. Clear morphological differences were observed between adult thale cress plants exposed to citral in two different application methods: spraying and watering. Citral-sprayed and citral-watered thale cress plants showed completely different effects after treatment, suggesting that foliar or root absorption can determine the effectiveness of this compound. This work demonstrates that citral is effective not only on seedling metabolism but also on adult plants by inhibiting growth and development altering the plant oxidative status.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aspinall, D. and Paleg, L. G. 1981. Proline accumulation. Physiological aspects. Pp. 206241 in Paleg, L. G. and Aspinall, D., eds. Physiology and Biochemistry of Drought Resistance. Sydney, Australia Academic.Google Scholar
Bates, L., Waldren, R. P., and Teare, I. D. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39:205207.Google Scholar
Bilger, W. and Björkman, O. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis . Photosynth. Res. 25:173185.CrossRefGoogle ScholarPubMed
deBoer, G. J., Thornburgh, S., Gilbert, J., and Gast, R. E. 2011. The impact of uptake, translocation and metabolism on the differential selectivity between blackgrass and wheat for the herbicide pyroxsulam. Pest Manag. Sci. 67:279286.Google Scholar
Bosnic, A. C. and Swanton, C. J. 1997. Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci. 45:276282.Google Scholar
Chaimovitsh, D., Abu-Abied, M., Belausov, E., Rubin, B., Dudai, N., and Sadot, E. 2010. Microtubules are an intracellular target of the plant terpene citral. Plant J. 61:399408.CrossRefGoogle ScholarPubMed
Chaimovitsh, D., Rogovoy, O., Altshuler, O., Belausov, E., Abu-Abied, M., Rubin, B., Sadot, E., and Dudai, N. 2011. The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells. Plant Biol. 14:354364.Google Scholar
Chiapusio, G., Sánchez, A. M., Reigosa, M. J., González, L., and Pellisier, F. 1997. Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 23:24452453.Google Scholar
Concenço, G., Silva, A. F., Ferreira, E. A., Galon, L., Noldin, J. A., Aspiazú, I., Ferreira, F. A., and Silva, A. A. 2009. Effect of dose and application site on quinclorac absorption by barnyardgrass biotypes. Planta Daninha 27:541548.Google Scholar
Dayan, F. E. and Duke, S. O. 2009. Biological activity of allelochemicals. Pp. 361384 in Osbourn, A. E. and Lanzotti, V., eds. Plant-Derived Natural Products. New York, NY Springer Science.CrossRefGoogle Scholar
Dayan, F. E., Romagni, J. G., and Duke, S. O. 2000. Investigating the mode of action of natural phytotoxins. J. Chem. Ecol. 26:20792094.CrossRefGoogle Scholar
Demmig-Adams, B., Adams, W. W. III, Logan, B. A., and Verhoeven, A. S. 1995. Xanthophyll-cycle–dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress. Aust. J. Plant Physiol. 22:249260.Google Scholar
Dhindsa, R. S., Dhindsa, P. P., and Thorpe, T. A. 1981. Leaf senescence: correlated with increased level of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32:93101.CrossRefGoogle Scholar
Dias, L. S. 2001. Describing phytotoxic effects on cumulative germination. J. Chem. Ecol. 27:411418.Google Scholar
Dikusar, E. A., Zhukovskaya, N. A., Moiseichuk, K. L., Zalesskaya, E. G., Vyglazov, O., and Kurman, P. V. 2008. Synthesis and structure—aroma correlation of citral oxide esters. Chem. Nat. Compd. 44:8183.CrossRefGoogle Scholar
Djorjdevic, D., Cercaci, L., Alamed, J., McClements, D. J., and Decker, E. A. 2008. Stability of citral in protein- and gum Arabic-stabilized oil-in-water emulsions. Food Chem. 106:698705.CrossRefGoogle Scholar
Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., and Lerner, H. R. 1999. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 25:10791089.Google Scholar
Duke, S. O., Rimando, A., Scheffler, B., and Dayan, F. E. 2002. Strategies for research in applied aspects of allelopathy. Pp. 139152 in Reigosa, M. J. and Pedrol, N., eds. Allelopathy: From Molecules to Ecosystems. Plymouth, UK Science Publishers.Google Scholar
Feller, U., Anders, I., and Mae, T. 2008. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J. Exp. Bot. 59:16151624.CrossRefGoogle Scholar
Filella, I., Serrano, L., Serra, J., and Peñuelas, J. 1995. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 35:14001405.Google Scholar
Finkelstein, R. and Rock, C. 2002. Abscisic acid biosynthesis and response. Pp. 152 in Meyerowitz, E. M. and Somerville, C. R., eds. The Arabidopsis Book. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press.Google Scholar
Genty, B., Briantais, J. M., and Baker, N. R. 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:8792.Google Scholar
Gibson, K. D., Fischer, A. J., Foin, T. C., and Hill, J. E. 2002. Implications of delayed Echinochloa spp. germination and duration of competition for integrated weed management in water-seeded rice. Weed Res. 42:351358.CrossRefGoogle Scholar
Gomathinayagam, M., Anuradha, V. E., Zhao, C., Ayoola, G. A., Abdul Jaleel, C., and Anneerse, R. P. 2009. ABA and GA3 affect the growth and pigment composition in Andrographis paniculata Wall. ex Nees. an important folk herb. Front. Biol. (Beijing, China) 4:337341.CrossRefGoogle Scholar
Griffin, S., Wyllie, S. G., and Markham, J. 1999. Determination of octanol-water partition coefficient for terpenoids using reversed-phase high performance liquid chromatography. J. Chromatogr. A 864:221228.Google Scholar
Hare, P. D. and Cress, W. A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21:79102.Google Scholar
Havaux, M. and Kloppstech, K. 2001. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953966.CrossRefGoogle Scholar
Hoagland, R. E. and Williams, R. D. 2004. Bioassays—useful tools for the study of allelopathy. Pp. 315351 in Macías, F. A., Galindo, J.C.G., Molinillo, J.M.G., and Cutler, H. G., eds. Allelopathy: Chemistry and Mode of Action of Allelochemicals. Boca Raton, FL CRC.Google Scholar
Hodges, D. M., DeLong, J. M., Forney, C. F., and Prange, R. K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604611.Google Scholar
Inderjit. 2001. Soil: environmental effects on allelochemical activity. Agron. J. 93:7984.Google Scholar
Kramer, D. M., Johnson, G., Kiirats, O., and Edwards, G. E. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 79:209218.CrossRefGoogle ScholarPubMed
Lim, P. O., Woo, H. R., and Nam, H. G. 2003. Molecular genetics of leaf senescence in Arabidopsis . Trends Plant Sci. 6:272278.Google Scholar
Long, F. L. and Clements, F. E. 1934. The method of collodion films for stomata. Am. J. Bot. 21:717.CrossRefGoogle Scholar
Lycan, D. W. and Hart, S. E. 2006. Foliar and root absorption and translocation of bispyribac-sodium in cool-season turfgrass. Weed Technol. 20:10151022.CrossRefGoogle Scholar
Macías, F. A., Molinillo, M.J.G., Castellano, D., and Velasco, R. F. 1999. Sesquiterpene lactones with potential use as natural herbicide models (I): trans, trans-germacranolide. J. Agric. Food Chem. 47:44074414.Google Scholar
Martínez-Peñalver, A., Reigosa, M. J., and Sánchez-Moreiras, A. M. 2011. Imaging chlorophyll a fluorescence reveals specific spatial distributions under different stress conditions. Flora 206:836844.CrossRefGoogle Scholar
Maxwell, K. and Johnson, G. N. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51:659668.CrossRefGoogle ScholarPubMed
Noodén, L. D., Guiamet, J. J., and John, I. 1997. Senescence mechanisms. Physiol. Plant. 101:746753.Google Scholar
Owen, M.D.K. 1997. North American developments in herbicide tolerant crops. Proc. Brighton Conf. Weeds 3:955963.Google Scholar
Pedrol, N. and Ramos, P. 2001. Protein content quantification by Bradford method. Pp. 283296 in Reigosa, M. J., ed. Handbook of Plant Ecophysiology Techniques. Dordrecht, The Netherlands Kluwer Academic.Google Scholar
Rabbani, S. I., Devi, K., Khanam, S., and Zahra, N. 2006. Citral, a component of lemongrass oil inhibits the clastogenic effect of nickel chloride in mouse micronucleus test system. Pak. J. Pharm. Sci. 19:108113.Google ScholarPubMed
Thermina, A. and Rukhsana, B. 2005. Importance of germination indices in interpretation of allelochemical effects. Int. J. Agric. Biol. 7:417419.Google Scholar
Van Acker, F.A.A., Schouten, O., Haenen, G.R.M.M., van der Vijgh, W.J.F., and Bast, A. 2000. Flavonoids can replace tocopherol as an antioxidant. FEBS Lett. 473:145148.Google Scholar
Wellburn, A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144:307313.Google Scholar
Wingler, A., Marès, M., and Pourtau, N. 2004. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytol. 161:781789.Google Scholar
Yu, H., Chen, X., Hong, Y. Y., Wang, Y., Xu, P., Ke, S. D., Liu, H. Y., Zhu, J. K., Olive, D. J., and Xiang, C. B. 2008. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:11341151.Google Scholar
Zhang, L., Hu, G., Cheng, Y., and Huang, J. 2008. Heterotrimeric G protein α and β subunits antagonistically modulate stomatal density in Arabidopsis thaliana . Dev. Biol. 324:6875.Google Scholar