Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T06:01:51.523Z Has data issue: false hasContentIssue false

Uptake, Metabolism, and Activity of Haloxyfop in Liquid Cultures of Proso Millet (Panicum miliaceum L. cv Abarr)

Published online by Cambridge University Press:  12 June 2017

Gerard P. Irzyk
Affiliation:
Dep. Bot. and Plant Pathol., Purdue Univ., West Lafayette, IN 47907
Thomas T. Bauman
Affiliation:
Dep. Bot. and Plant Pathol., Purdue Univ., West Lafayette, IN 47907
Nicholas C. Carpita
Affiliation:
Dep. Bot. and Plant Pathol., Purdue Univ., West Lafayette, IN 47907

Abstract

Suspension cultures of proso millet cells were treated with haloxyfop at different phases of growth. Treatment of 1-d cultures with 1 μM haloxyfop completely inhibited growth within 48 h. In contrast, 1 mM haloxyfop was required to elicit a similar response in 4-, 7-, or 10-d cultures. Calculated IC50 values indicated a 300-fold decrease in haloxyfop sensitivity during the period from 1 to 4 d. The observed changes in sensitivity to haloxyfop could not be attributed to changes in cell concentration during culture growth. In both 1-d and 4-d cultures, an initial rapid uptake of radiolabel was followed by a slow loss of radiolabel from cells. Almost all radioactivity extracted from 1-d and 4-d cells was present as the parent acid. Several radiolabeled compounds in addition to the parent acid were present in media. No major differences in the amounts of these materials were found between 1-d and 4-d media. Our results indicate that a special aspect of metabolism expressed during cell division is particularly sensitive to the herbicide.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Buhler, D. D., Swisher, B. A., and Burnside, O. C. 1985. Behavior of 14C-haloxyfop-methyl in intact plants and cell cultures. Weed Sci. 38:291299.Google Scholar
2. Burton, J. D., Gronwald, J. W., Somers, D. A., Connelly, J. A., Gegenbach, B. G., and Wyse, D. L. 1987. Inhibition of plant acetyl-CoA carboxylase by the herbicides sethoxydim and haloxyfop. Biochem. Biophys. Res. Comm. 148(3):10391044.Google Scholar
3. Burton, J. D., Gronwald, J. W., Somers, D. A., Gegenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic. Biochem. Physiol. 34:7685.Google Scholar
4. Burton, K. 1965. Determination of DNA concentration with diphenylamine. Methods Enzymol. 12:163166.Google Scholar
5. Carpita, N. C., Mulligan, J. A., and Heyser, J. W. 1985. Hemicelluloses of cell walls of a proso millet cell suspension culture. Plant Physiol. 79:480484.Google Scholar
6. Cherry, J. H. 1962. Nucleic acid determination in storage tissues of higher plants. Plant Physiol. 37:670678.Google Scholar
7. Cho, H. Y., Widholm, J. M., and Slife, F. W. 1986. Effects of haloxyfop on corn (Zea mays) and soybean (Glycine max) cell suspension cultures. Weed Sci. 34:496501.Google Scholar
8. Crafts, A. S. 1953. Herbicides–their absorption and translocation J. Agri. Food Chem. 1:5155.CrossRefGoogle Scholar
9. Crowley, J. C. and Prendeville, G. N. 1979. Effect of diclofop-methyl on leaf-cell membrane permeability in wild oat, barley, and wheat. Can. J. Plant Sci. 59:275277.CrossRefGoogle Scholar
10. Dixon, R. A. 1986. Isolation and maintenance of callus and cell suspension cultures. Page 17 in Dixon, R. A., ed. Plant cell culture–a practical approach. IRL Press, Washington, DC.Google Scholar
11. Dusky, J. A., Davis, D. G., and Shimabukuro, R. H. 1980. Metabolism of diclofop-methyl {methyl-2-[4-(2′,4′-dichlorophenoxy)phenoxy]-propanoate} in cell suspensions of diploid wheat (Triticum monococcum). Physiol. Plant. 49:151156.Google Scholar
12. Dusky, J. A., Davies, D. G., and Shimabukuro, R. H. 1982. Metabolism of diclofop-methyl in cell cultures of Avena sativa cultivar Garry and Avena fatua . Physiol. Plant. 54:490494.Google Scholar
13. Dyer, W. E. 1988. Glyphosate tolerance in tobacco (Nicotiana tabacum L.). Plant Physiol. 88:661666.CrossRefGoogle ScholarPubMed
14. Egin-Bühler, B., Loyal, R., and Ebel, J. 1980. Comparison of acetyl-CoA carboxylases from parsley cell cultures and wheat germ. Arch. Biochem. Biophys. 203:90100.Google Scholar
15. Gronwald, J. G. 1986. Effect of haloxyfop and haloxyfop-methyl on elongation and respiration of corn (Zea mays) and soybean (Glycine max) roots. Weed Sci. 34:196202.Google Scholar
16. Harker, K. N. and Dekker, J. 1988. Effects of phenology on translocation patterns of several herbicides in quackgrass, Agropyron repens . Weed Sci. 36:463472.Google Scholar
17. Harrison, S. K. and Wax, L. M. 1986. Adjuvant effects on absorption, translocation, and metabolism of haloxyfop-methyl in corn (Zea mays). Weed Sci. 34:185195.Google Scholar
18. Hendley, P., Dicks, J. W., Monaco, T. J., Slyfield, S. M., Tummon, O. J., and Barret, J. C. 1985. Translocation and metabolism of pyridinyloxyphenoxypropionate herbicides in rhizomatous quackgrass (Agropyron repens). Weed Sci. 33:1124.Google Scholar
19. Holdgate, D. P. and Goodwin, T. W. 1965. Quantitative extraction and estimation of plant nucleic acids. Phytochem. 4:831843.Google Scholar
20. Irzyk, G. and Carpita, N. C. 1988. Sensitivity of proso millet cells to haloxyfop changes during suspension culture. Plant Physiol. 86(S):120.Google Scholar
21. Jain, R. and Vanden Born, W. H. 1989. Morphological and histological effects of three grass selective herbicides on developing wild oat (Avena fatua) stems. Weed Sci. 37:575584.Google Scholar
22. Kim, J. C. and Bendixen, L. E. 1987. Effects of haloxyfop and CGA-82725 on cell cycle and cell division of oat (Avena sativa) root tips. Weed Sci. 35:769774.Google Scholar
23. King, P. J. and Street, H. E. 1977. Growth patterns in cell cultures. Pages 312332 in Street, H. E., ed. Plant Tissue and Cell Culture. 2nd ed. Univ. of California Press, Los Angeles.Google Scholar
24. Kobek, K., Focke, M., and Lichtenthaler, H. K. 1988. Fatty-acid biosynthesis and acetyl-CoA carboxylase as a target of diclofop, fenoxaprop, and other aryloxy-phenoxy-propionic acid herbicides. Z. Naturforsch. 43c:4754.Google Scholar
25. McCall, P. J. 1988. Effect of chemical structure, temperature, crop oil concentrate, and bentazon on the behavior of haloxyfop in yellow foxtail (Setaria glauca)–a quantitative modeling approach. Weed Sci. 36:424435.CrossRefGoogle Scholar
26. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473497.CrossRefGoogle Scholar
27. Reinhart, J. and Yeoman, M. M. 1982. Page 72 in Plant Cell and Tissue Culture. Springer-Verlag, New York.Google Scholar
28. Rendina, A. R., Felts, J. M., Beaudoin, J. D., Craig-Kennard, A. C., Look, L. L., Paraskos, S. L., and Hagenah, J. A. 1988. Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicides. Arch. Biochem. Biophys. 265(1):219225.Google Scholar
29. Robertson, R. N. 1983. Pages 125127 in The Lively Membranes. Cambridge Univ. Press, Cambridge.Google Scholar
30. Secor, J. and Cséke, C. 1988. Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralkoxydim. Plant Physiol. 86:1012.Google Scholar
31. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M.D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:7685.Google Scholar
32. Sterling, T. R. and Balke, N. E. 1988. Use of soybean (Glycine max) and velvetleaf (Abutilon theophrasti) suspension-cultured cells to study bentazon metabolism. Weed Sci. 36:558565.Google Scholar
33. Stoltenberg, D. E., Gronwald, J. W., Wyse, D. L., Somers, J. D., Somers, D. A., and Gegenbach, B. G. 1989. Effect of sethoxydim and haloxyfop on acetyl-CoA carboxylase activity in Festuca species. Weed Sci. 36:512516.Google Scholar
34. Street, H. E. 1977. Applications of cell suspension cultures. Pages 650693 in Reinert, J. and Bajaj, Y.P.S. eds. Plant cell, tissue, and organ culture. Springer-Verlag, New York.Google Scholar
35. Uchiyama, M., Washio, N., Ikai, T., Igarashi, H., and Suzuki, K. 1986. Stereospecific responses to (R)-(+)- and (S)-(–)-quizalofop-ethyl in tissues of several plants. 1986. J. Pestic. Sci. (Nippon Noyaku Gakkai). 11:459467.CrossRefGoogle Scholar
36. Vaughn, S. F. and Merkle, M. G. 1989. Histological and cytological effects of haloxyfop on sorghum (Sorghum bicolor) and unicorn-plant (Proboscidea louisianaica) root meristems. Weed Sci. 37:503511.Google Scholar
37. Wilhm, J. L., Meggitt, W. F., and Penner, D. 1986. Effect of acifluorfen and bentazon on absorption and translocation of haloxyfop and DPX-6202 in quackgrass (Agropyron repens). Weed Sci. 34:333337.Google Scholar
38. Widholm, J. M. 1972. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 47(4):189194.Google Scholar
39. Worthing, C. R. 1987. Page 453 in The Pesticide Manual–A World Compendium. 8th ed. Br. Crop Prot. Coun., London.Google Scholar
40. Zilkah, S. and Gressel, J. 1978. Differential inhibition by dikegulac of dividing and stationary cells in In Vitro cultures. Planta 142:281285.Google Scholar