Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T20:08:46.082Z Has data issue: false hasContentIssue false

Evaluation of Cereal and Brassicaceae Cover Crops in Conservation-Tillage, Enhanced, Glyphosate-Resistant Cotton

Published online by Cambridge University Press:  20 January 2017

Jason K. Norsworthy*
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Marilyn McClelland
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR
Griff Griffith
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR
Sanjeev K. Bangarwa
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR
Joshua Still
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR
*
Corresponding author's E-mail: jnorswor@uark.edu

Abstract

Research was conducted for 2 yr at Marianna, AR, to determine whether the fall-planted cover crops rye, wheat, turnip, and a blend of brown and white mustard (Caliente) would aid weed management programs in conservation-tilled, enhanced, glyphosate-resistant cotton. Wheat and rye easily were established both years and turnip and mustard blend stands were better in the second year. The cover crops alone were more suppressive of Palmer amaranth, pitted morningglory, and goosegrass in 2007 than in 2008. Rye was generally superior to wheat in suppressing the three evaluated weeds. Once herbicides were applied, there were seldom differences among cover crops for a particular herbicide program as a result of the highly efficacious herbicide programs. Cotton yields were not affected by wheat, rye, or the mustard blend, but yields were lowest in plots that followed turnip both years, possibly because of allelopathy. Integration of cover crops, especially cereals, into conservation-tilled, glyphosate-resistant cotton aided early-season weed management and could reduce the selection of glyphosate for herbicide resistance.

Una investigación fue llevada al cabo durante 2 años en Mariana, AR para determinar si los cultivos de cobertera Secale cereale, Triticum aestivum, Brassica rapa, una mezcla de Brassica juncea y Sinapis alba (Caliente) sembrados en el otoño, podrían mejorar los programas de manejo de maleza en algodón (Gossypium hirsutum) mejorado resistente a glifosato, establecido con labranza de conservación. T. aestivum y S. cereale se establecieron fácilmente en ambos años, sin embargo, B. rapa y la mezcla de B. juncea y S. alba se establecieron mejor en el segundo año. Los cultivos de cobertera solos, suprimieron mejor a Amaranthus palmeri, Ipomoea lacunosa y Eleusine indica en 2007 comparado con 2008. El S. cereale fue generalmente superior a T. aestivum en suprimir las tres especies de maleza evaluadas. Una vez que los herbicidas fueron aplicados, rara vez hubo diferencias entre los cultivos de cobertera para un programa de herbicidas en particular; lo anterior, fue resultado de la alta eficacia de los programas de herbicidas. Los rendimientos de algodón no fueron afectados por T. aestivum, S. cereale o la mezcla de mostazas, pero los rendimientos más bajos ocurrieron en parcelas donde se sembró B. rapa en ambos años, debido posiblemente a alelopatía. La integración de cultivos de cobertera, especialmente cereales, en cultivo de algodón mejorado resistente a glifosato en labranza de conservación, ayudó en el manejo de la maleza al inicio de la estación y podría reducir la selección para resistencia a glifosato.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Libbey, C., and Boydston, R. 1997. Weed suppression with Brassica green manure crops in green pea. Weed Sci. 45:439445.Google Scholar
Ateh, C. M. and Doll, J. D. 1996. Spring-planted winter rye (Secale cereale) as a living mulch to control weeds in soybean (Glycine max). Weed Technol. 10:347353.Google Scholar
Ayeni, A. O., Majek, B. A., and Hammerstedt, J. 1998. Rainfall influence on imazethapyr bioactivity in New Jersey soils. Weed Sci. 46:581586.Google Scholar
Banks, P. A. and Robinson, E. L. 1982. The influence of straw mulch on the soil reception and persistence of metribuzin. Weed Sci. 30:164168.Google Scholar
Barnes, J. P. and Putnam, A. R. 1986. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci. 34:384390.Google Scholar
Barnes, J. P. and Putnam, A. R. 1987. Role of benzoxazinones in allelopathy by rye (Secale cereal L.). Chem. Ecol 13:889905.Google Scholar
Bauer, P. J. and Reeves, D. W. 1999. A comparison of winter cereal species and planting dates as residue cover for cotton grown with conservation tillage. Crop. Sci 39:18241830.Google Scholar
Brennan, E. B. and Smith, R. F. 2005. Winter cover crop growth and weed suppression on the central coast of California. Weed Technol. 19:10171024.Google Scholar
Burgos, N. R. and Talbert, R. E. 2000. Differential activity of allelochemicals from Secale cereal in seedling bioassays. Weed Sci. 48:302310.Google Scholar
Burgos, N. R., Talbert, R. E., and Mattice, J. D. 1999. Cultivar and age differences in the production of allelochemicals by Secale cereale . Weed Sci. 47:481485.Google Scholar
Chachalis, D., Reddy, K. N., Elmore, C. D., and Steele, M. L. 2001. Herbicide efficacy, leaf structure, and spray droplet contact angle among Ipomoea species and smallflower morningglory. Weed Sci. 49:628634.Google Scholar
Collins, A. S., Chase, C. A., Stall, W. M., and Hutchinson, C. M. 2007. Competitiveness of three leguminous cover crops with yellow nutsedge (Cyperus esculentus) and smooth pigweed (Amaranthus hybridus). Weed Sci. 55:613618.Google Scholar
Crutchfield, D. A., Wicks, G. A., and Burnside, O. C. 1985. Effect of winter wheat (Triticum aestivum) straw mulch level on weed control. Weed Sci. 34:110114.Google Scholar
Daniel, J. B., Abaye, A. O., Alley, M. M., Adcock, C. W., and Maitland, J. C. 1999. Winter annual cover crops in a Virginia no-till cotton production system: II. Cover crop and tillage effects on soil moisture, cotton yield, and cotton quality. J. Cotton Sci 3:8491.Google Scholar
Dhima, K. V., Vasilakoglou, I. B., Eleftherohorinos, I. G., and Lithourgidis, A. S. 2006. Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Sci 46:345352.Google Scholar
Faircloth, W. H., Patterson, M. G., Monks, C. D., and Goodman, W. R. 2001. Weed management programs for glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technol. 15:544551.Google Scholar
Fast, B. J., Murdock, S. W., Farris, R. L., Willis, J. B., and Murray, D. S. 2009. Critical timing of Palmer amaranth (Amaranthus palmeri) removal in second-generation glyphosate-resistant cotton. J. Cotton Sci 13:3236.Google Scholar
Fisk, J. W., Hesterman, O. B., Shrestha, A., Kells, J. J., Harwood, R. R., Squire, J. M., and Sheaffer, C. C. 2001. Weed suppression by annual legume cover crops in no-tillage corn. Agron. J. 93:319325.Google Scholar
Ghadiri, H., Shea, P. J., and Wicks, G. A. 1984. Interception and retention of atrazine by wheat (Triticum aestivum) stubble. Weed Sci. 32:2427.Google Scholar
Haramoto, E. R. and Gallandt, E. R. 2005a. Brassica cover cropping: I. Effects on weed and crop establishment. Weed Sci. 53:695701.Google Scholar
Haramoto, E. R. and Gallandt, E. R. 2005b. Brassica cover cropping: II. Effects on growth and interference of green bean (Phaseolus vulgaris) and redroot pigweed (Amaranthus retroflexus). Weed Sci. 53:702708.Google Scholar
Isik, D., Kaya, E., Ngouajio, M., and Mennan, H. 2009. Weed suppression in organic pepper (Capsicum annuum L.) with winter cover crops. Crop Prot 28:356363.Google Scholar
Jha, P. and Norsworthy, J. K. 2009. Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci. 57:644651.Google Scholar
Koger, C. H., Poston, D. H., and Reddy, K. N. 2004. Effect of glyphosate spray coverage on control of pitted morningglory (Ipomoea lacunosa). Weed Technol. 18:124130.Google Scholar
Krutz, L. J., Locke, M. A., and Steinriede, R. W. Jr. 2009. Interactions of tillage and cover crops on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes. J. Environ. Qual. 38:12401247.Google Scholar
Malik, M. S., Norsworthy, J. K., Culpepper, A. S., Riley, M. B., and Bridges, W. 2008. Use of wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci. 56:588595.Google Scholar
Mannering, J. V., Griffith, D. R., and Johnson, K. D. 1985. Winter Cover Crops—Their Value and Management. http//www.agry.purdue.edu/ext/forages/publications/ay247.htm. Accessed; January 3, 2010.Google Scholar
Mohler, C. L. and Teasdale, J. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 33:487499.Google Scholar
Molin, W. T. 2006. Contributions of Tillage, Rye Cover Crop and Herbicide Programs to Weed Control in Glyphosate-Tolerant Cotton. Pages 171173. In Schwartz, R. C., Baumhardt, R. L., and Bell, J. M. eds. Proceedings of the 28th Southern Conservation Tillage Systems Conference, Amarillo, Texas. June 26–28, 2006, USDA–ARS Conservation and Production Research Laboratory, Report No. 06-091, Bushland, TX. http://www.ag.auburn.edu/auxiliary/nsdl/scasc/. Accessed: August 4, 2009.Google Scholar
Moyer, J. R. 1987. Effect of soil moisture on the efficacy and selectivity of soil-applied herbicides. Rev. Weed Sci 3:1934.Google Scholar
Nichols, R. L., Bond, J., Culpepper, A. S., et al. 2009. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) spreads in the Southern United States. Resistant Pest Manag. Newsl 18 (2):810.Google Scholar
Norsworthy, J. K. 2003. Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technol. 17:307313.Google Scholar
Norsworthy, J. K. 2004. Small-grain cover crop interaction with glyphosate-resistant corn (Zea mays). Weed Technol. 18:5259.Google Scholar
Norsworthy, J. K., Brandenberger, L., Burgos, N. R., and Riley, M. 2005. Weed suppression in Vigna unguiculata with a spring-seeded Brassicaceae green manure. Crop Prot 24:441447.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005a. Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci. 53:515520.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005b. Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci. 53:884890.Google Scholar
Patterson, M. G. 2009. Evaluation of Herbicides for Palmer Amaranth Control in Cotton, Headland, Alabama, 2008. Page. 41. in No. 33–2008 Cotton Research Report, Alabama Agricultural Experiment Station, Agricultural Communications. http://www.ag.auburn.edu/aaes/communications/researchreports/08cottonrr.pdf. Accessed: December 16, 2009.Google Scholar
Petersen, J., Belz, R., Walker, F., and Hurle, K. 2001. Weed suppression by release of isothicyanates from turnip-rape mulch. Agron. J. 93:3743.Google Scholar
Price, A. J., Koger, C. H., Wilcut, J. W., Miller, D., and van Santen, E. 2008. Efficacy of residual and non-residual herbicides used in cotton production systems when applied with glyphosate, glufosinate, and MSMA. Weed Technol. 22:459466.Google Scholar
Price, A. J., Monks, C. D., and Patterson, M. G. 2007. Early Season Pigweed Control in Conservation Tillage Cotton. Pages. 1315. in No. 32–2007 Cotton Research Report, Alabama Agricultural Experiment Station, Agricultural Communications. http://www.ag.auburn.edu/aaes/communications/listsofpubs/researchreports31-35.htm#32. Accessed: December 14, 2009.Google Scholar
Reddy, K. N. 2001. Effects of cereal and legume cover crop residues on weeds, yield, and net return in soybean (Glycine max). Weed Technol. 15:660668.Google Scholar
Reeves, D. W., Price, A. J., and Patterson, M. G. 2005. Evaluation of three winter cereals for weed control in conservation-tillage nontransgenic cotton. Weed Technol. 19:731736.Google Scholar
Schomberg, H. H., McDaniel, R. G., Mallard, E., Endale, D. M., Fisher, D. S., and Cabrera, M. L. 2006. Conservation tillage and cover crop influences on cotton production on a southeastern U.S. Coastal Plain soil. Agron. J. 98:12471256.Google Scholar
Teasdale, J. R. 1996. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric 9:475479.Google Scholar
Teasdale, J. R., Beste, C. E., and Potts, W. E. 1991. Response of weeds to tillage and cover crop residue. Weed Sci. 39:195199.Google Scholar
Teasdale, J. R. and Mohler, C. L. 2000. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 48:385392.Google Scholar
Teasdale, J. R., Pillai, P., and Collins, R. T. 2005. Synergism between cover crop residue and herbicide activity on emergence and early growth of weeds. Weed Sci. 53:521527.Google Scholar
Vasilakoglou, I., Dhima, I., Eleftherohorinos, I., and Lithourgidis, A. 2006. Winter cereal cover crop mulches and inter-row cultivation effects on cotton development and grass suppression. Agron. J. 98:12901297.Google Scholar
White, R. H., Worsham, A. D., and Blum, U. 1989. Allelopathic potential of legume debris and aqueous extracts. Weed Sci. 37:674679.Google Scholar
Yenish, J. P., Worsham, A. D., and York, A. C. 1996. Cover crops for herbicide replacement in no-tillage corn (Zea mays). Weed Technol. 10:815821.Google Scholar
Zasada, I. A., Linder, H. M., and Coble, H. D. 1997. Initial weed densities affect to-tillage weed management with a rye (Secale cereale) cover crop. Weed Technol. 11:473477.Google Scholar