Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T06:47:10.611Z Has data issue: false hasContentIssue false

Postemergence Tropical Signalgrass (Urochloa subquadripara) Control with Nonorganic Arsenical Herbicides

Published online by Cambridge University Press:  20 January 2017

Robert B. Cross
Affiliation:
Department of Agricultural and Environmental Sciences, E-143 Poole Agriculture Center, Clemson University, Clemson, SC 29634
Lambert B. McCarty*
Affiliation:
Department of Agricultural and Environmental Sciences, E-143 Poole Agriculture Center, Clemson University, Clemson, SC 29634
Alan G. Estes
Affiliation:
PBI-Gordon Corporation, Kansas City, MO 64101
*
Corresponding author's E-mail: bmccrty@clemson.edu

Abstract

Tropical signalgrass (TSG) has become a serious weed problem in tropical and subtropical regions such as Florida in recent years in association with the ban of organic arsenical herbicide use in turf. The purpose of this research was to identify alternative POST herbicides that control TSG. Two field experiments were conducted in bermudagrass golf course fairways in south and central Florida in 2014 and 2015. Several nonorganic arsenical herbicide treatments controlled TSG. In the first experiment, treatments containing amicarbazone alone and in combination with other herbicides provided > 97% TSG control 12 wk after initial treatment (WAIT) in 2014 and 2015. These included a single application of amicarbazone at 0.49 kg ai ha−1, or sequential applications of amicarbazone at 0.25 kg ha−1 in combination with foramsulfuron at 0.04 kg ai ha−1, sulfentrazone + imazethapyr at 0.25 kg ai ha−1, thiencarbazone + foramsulfuron + halosulfuron at 0.14 kg ai ha−1, and thiencarbazone + iodosulfuron + dicamba at 0.18 kg ai/ae ha−1. In the second experiment, sequential applications of thiencarbazone + foramsulfuron + halosulfuron at 0.14 kg ha−1 in combination with either quinclorac at 0.84 kg ai ha−1 or metribuzin at 0.28 kg ai ha−1 provided ≥ 85% TSG control 12 WAIT in both years.

En años recientes, Urochloa subquadripara (TSG) se ha convertido en un problema serio de malezas en regiones tropicales y subtropicales, como Florida, en asociación con la prohibición de uso de herbicidas de arsénico orgánico en céspedes. El objetivo de esta investigación fue identificar alternativas de herbicidas POST que controlen TSG. Se realizaron dos experimentos de campo en fairways de campos de golf con césped bermuda en el sur y centro de Florida en 2014 y 2015. Varios tratamientos con herbicidas con arsénico no-orgánico controlaron TSG. En el primer experimento, los tratamientos que contenían amicarbazone solo o en combinación con otros herbicidas brindaron > 97% de control de TSG 12 semanas después del tratamiento inicial (WAIT) en 2014 y 2015. Estos incluyeron una sola aplicación de amicarbazone a 0.49 kg ai ha−1, o aplicaciones secuenciales de amicarbazone a 0.25 kg ha−1 en combinación con foramsulfuron a 0.04 kg ai ha−1, sulfentrazone + imazethapyr a 0.25 kg ai ha−1, thiencarbazone + foramsulfuron + halosulfuron a 0.14 kg ai ha−1, y thiencarbazone + iodosulfuron + dicamba a 0.18 kg ai/ae ha−1. En el segundo experimento, aplicaciones secuenciales de thiencarbazone + foramsulfuron + halosulfuron a 0.14 kg ha−1 en combinación con quinclorac a 0.84 kg ai ha−1 o metribuzin a 0.28 kg ai ha−1 brindaron ≥ 85% de control de TSG 12 WAIT en ambos años.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Patrick E. McCullough.

References

Literature Cited

Abendroth, JA, Martin, AR, Roeth, FW (2006) Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol 20: 267274 Google Scholar
Anonymous (2014) Tenacity® Section 24(c) Special local need label. EPA SLN No. FL-140010. Greensboro, NC: Syngenta Crop Protection. 1 pGoogle Scholar
Beckie, HJ, Reboud, X (2009) Selecting for weed resistance: herbicide rotation and mixture. Weed Technol 23: 363370 CrossRefGoogle Scholar
Bromilow, RH, Chamberlain, K, Evans, AA (1990) Physiochemical aspects of phloem translocation of herbicides. Weed Sci 38: 305314 CrossRefGoogle Scholar
Heap, I (2016) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed January 4, 2016Google Scholar
McCarty, BM, Estes, AG (2014) Tropical signalgrass control. Golf Course Manag 82: 8085 Google Scholar
McCarty, LB, Everest, JW, Hall, DW, Murphy, TR, Yelverton, F (2008) Tropical signalgrass. Page 117 in McCarty, LB, ed. Color Atlas of Turfgrass Weeds: A Guide to Weed Identification and Control Strategies. Hoboken, NJ: John Wiley & Sons Google Scholar
Pollock, CJ, Cairns, AJ (1991) Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol 42: 77101 Google Scholar
Shabana, TM, Stiles, CM, Charudattan, R, Abou Tabl, AH (2010) Evaluation of bioherbicidal control of tropical signalgrass, crabgrass, smutgrass, and torpedograss. Weed Technol 24: 165172 Google Scholar
Teuton, TC, Brecke, BJ, Unruh, JB, MacDonald, GE, Miller, GL, Ducar, JT (2004a) Factors affecting seed germination of tropical signalgrass (Urochloa subquadripara) Weed Sci 52: 376381 CrossRefGoogle Scholar
Teuton, TC, Main, CL, Mueller, TC (2005) Prediction modeling for tropical signalgrass (Urochloa subquadripara) emergence in Florida. Appl Turf Sci. DOI: 10.1094/ATS-2005-0425-01-BRGoogle Scholar
Teuton, TC, Unruh, JB, Brecke, BJ, MacDonald, GE, Miller, GL, Ducar, JT (2004b) Tropical signalgrass (Urochloa subquadripara) control with preemergence- and postemergence-applied herbicides. Weed Technol 18: 419425 Google Scholar
Tranel, PJ, Wright, TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned. Weed Sci 50: 700712 Google Scholar