Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T08:27:21.579Z Has data issue: false hasContentIssue false

Weed Suppression by Grasses for Orchard Floor Management

Published online by Cambridge University Press:  20 January 2017

Thomas J. Tworkoski*
Affiliation:
USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430
D. Michael Glenn
Affiliation:
USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430
*
Corresponding author's E-mail: tom.tworkoski@ars.usda.gov

Abstract

Fruit trees in orchards of the mid-Atlantic region of the United States are often planted in vegetation-free rows alternating with grass alleys. Grass managed to suppress weeds but to compete minimally with fruit trees may be an alternative to herbicide and tillage. This research was conducted in the greenhouse and field to assess five different grasses that may suppress weeds without reducing yield of fruit trees. In the greenhouse with high seeding rates, red fescue competed more effectively than did chewings fescue, tall fescue, and perennial ryegrass with three weeds (damesrocket, cornflower, and chicory). However, with reduced seeding rates, similar to rates used in the field, grass competitiveness with weeds was similar between red fescue, tall fescue, and perennial ryegrass. Similar results were obtained during a 4-yr field experiment; roughstalk bluegrass competed least effectively with weeds but the other four grasses provided similar weed suppression—generally providing as much weed suppression as traditional herbicides. None of the candidate grasses significantly reduced yields of 10-yr-old apple and peach trees, although fruit size was affected by some grasses. The grass that was least suppressive of yield, roughstalk bluegrass, was the least effective in controlling weeds. Annual mowing in combination with four of the grasses tested is one option to manage the orchard floor with reduced herbicides, but fruit size may decrease.

En las fincas de frutales de la región Atlántica media de los Estados Unidos, los árboles son plantados en líneas libres de vegetación alternadas con pasillos cubiertos con zacate. El uso de coberturas de zacate manejadas para suprimir malezas pero que compitan poco con los árboles frutales podría ser una alternativa al uso de herbicidas y labranza. Esta investigación fue realizada en invernadero y campo para evaluar cinco zacates diferentes que podrían suprimir malezas sin afectar el rendimiento de los árboles frutales. En el invernadero y a altas densidades de siembra, Festuca rubra compitió más efectivamente que F. rubra var. commutata, Lolium arundinaceum y L. perenne con tres malezas (Hesperis matronalis, Centaurea cyanus y Chorium intybus). Sin embargo, con densidades de siembra reducidas, equivalentes a las usadas en campo, la competitividad del zacate con malezas fue similar entre F. rubra, L. arundinaceum y L. perenne. Se obtuvo resultados similares durante los cuatro años del experimento de campo. Poa trivialis fue la especie que compitió en forma menos efectiva con las malezas, mientras que los otros cuatro zacates brindaron una supresión de malezas similar, la cual fue generalmente tan alta como la supresión de malezas de herbicidas tradicionales. Ninguno de los zacates candidatos redujo significativamente los rendimientos de árboles de manzana y pera de 10 años de edad, aunque el tamaño de la fruta fue afectado por algunos zacates. El zacate que redujo menos el rendimiento, P. trivialis, también fue el menos efectivo controlando malezas. Realizar una chapia anual en combinación con cuatro de los zacates evaluados es una opción para manejar el piso de una plantación de frutales haciendo un uso reducido de herbicidas, pero el tamaño de la fruta podría disminuir.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alston, D. G. 1994. Effect of apple orchard floor vegetation on density and dispersal of phytophagous and predaceous mites in Utah. Agric. Ecosyst. Environ. 50:7384.Google Scholar
Ames, G. K. and Kuepper, G. 2000. Overview of Organic Fruit Production. http://www.attra.org/attra-pub/fruitover.html. Accessed: January 29, 2004.Google Scholar
Atanassov, A., Shearer, P. W., Hamilton, G., and Polk, D. 2002. Development and implementation of a reduced risk peach arthropod management program in New Jersey orchards. J. Econ. Entomol. 95:803812.Google Scholar
Atkinson, D. 1980. The distribution and effectiveness of the roots of tree crops. Hortic. Rev. 2:424490.Google Scholar
Atkinson, D. and White, G. C. 1980. Some effects of orchard soil management on the mineral nutrition of apple trees. Pages 241254. In Atkinson, D., Jackson, J. E., Sharples, R. O. and Waller, W. M., eds. Mineral Nutrition of Fruit Trees. London, UK Butterworths.Google Scholar
Atkinson, D. and White, G. C. 1981. The effects of weeds and weed control on temperate fruit orchards and their environment. Pages 415428. In Thresh, J. M., ed. Pests, Pathogens, and Vegetation. Marshfield, MA Pitman Publishing.Google Scholar
Brown, M. W. 2001. Flowering ground cover plants for pest management in peach and apple orchards. Integr. Fruit Prot. 24:379382.Google Scholar
Byers, R. E. 1984. Control and management of vertebrate pests in deciduous orchards of the eastern United States. Hortic. Rev. 6:253285.Google Scholar
Dawson, L. A., Duff, E. I., Campbell, C. D., and Hirst, D. J. 2001. Depth distribution of cherry (Prunus avium L.) tree roots as influenced by grass root competition. Plant Soil 231:1119.Google Scholar
Duffus, J. E. 1971. Role of weeds in the incidence of virus diseases. Annu. Rev. Phytopathol. 9:319340.Google Scholar
Foshee, W. G., Goodman, R. W., Patterson, M. G., Goff, W. D., and Dozier, W. A. 1997. Weed control increases yield and economic returns from young ‘Desirable’ pecan trees. J. Am. Soc. Hortic. Sci. 122:588593.Google Scholar
Glenn, D. M. and Welker, W. V. 1989a. Cultural practices for enhanced growth of young peach trees. Am. J. Altern. Agric. 4:811.Google Scholar
Glenn, D. M. and Welker, W. V. 1989b. Orchard soil management systems influence rainfall infiltration. J. Am. Soc. Hortic. Sci. 114:1014.Google Scholar
Glenn, D. M. and Welker, W. V. 1991. Soil management affects shoot and root growth, nutrient availability, and water uptake of young peach trees. J. Am. Soc. Hortic. Sci. 116:238241.Google Scholar
Granatstein, D. and Sánchez, E. 2009. Research knowledge and needs for orchard floor management in organic tree fruit systems. Intl. J. Fruit Sci. 9:257281.Google Scholar
Harrington, K. C., Hartley, M. J., Rahman, A., and James, T. K. 2005. Long term ground cover options for apple orchards. N. Z. Plant Prot. 58:164168.Google Scholar
Haynes, R. J. 1980. Influence of soil management practice on the orchard agro-ecosystem. Agro-Ecosystems. 6:332.Google Scholar
Hogue, E. J. and Neilsen, G. H. 1987. Orchard floor vegetation management. Hortic. Rev. 9:377430.Google Scholar
Kenworthy, A. L. 1953. Moisture in orchard soils as influenced by age of sod and clean cultivation. Mich. Q. Bull. 35:454459.Google Scholar
Killian, J. C. and Meyer, J. R. 1984. Effect of weed management on catfacing damage to peaches in North Carolina. J. Econ. Entomol. 77:15961600.Google Scholar
LaRue, J. H. and Johnson, R. S., eds. 1989. Peaches, Plums, and Nectarines: Growing and Handling for Fresh Market. Oakland, CA University of California Division of Agriculture and Natural Resources. Publication 3331. 105 p.Google Scholar
Layne, R. E. C., Tan, C. S., and Fulton, J. M. 1981. Effect of irrigation and tree density on peach production. J. Am. Soc. Hortic. Sci. 106:151156.Google Scholar
Lipecki, J. and Berbeć, S. 1997. Soil management in perennial crops: orchards and hop gardens. Soil Tillage Res. 43:169184.Google Scholar
Lipecki, J. and Szwedo, J. 1995. The effect of long-term use of herbicides and sward and different NPK fertilization on some chemical properties of the soil in the orchard. Folia Hortic. 7:39.Google Scholar
Marks, M. J. 1993. Preliminary results of an evaluation of alternatives to the use of herbicides in orchards. Pages 461466. in Proceedings of the Brighton Crop Protection Conference—Weeds. Alton, UK British Crop Production Council.Google Scholar
Merwin, I. A. 2004. Groundcover management effects on orchard production, nutrition, soil and water quality. N. Y. Fruit Q. 12:2529.Google Scholar
Merwin, I. A. and Ray, J. A. 1997. Spatial and temporal factors in weed interference with newly planted apple trees. Hortscience 32:633637.Google Scholar
Moran, R. E. 2003. The effect of weed management strategies on weed growth and fruit quality in a certified organic apple orchard. Santa Cruz, CA Organic Farming Research Foundation Project 01-F-10. 7 p.Google Scholar
Parker, M. L. 2003. Growing Peaches in North Carolina. http://www.ces.ncsu.edu/depts/hort/hil/ag30.html. Accessed: August 25, 2003.Google Scholar
Parker, M. L. and Meyer, J. R. 1996. Peach tree vegetative and root growth respond to orchard floor management. Hortscience 31:330333.Google Scholar
Pfeiffer, D. D., coord, bull. 1998. Commercial Tree Fruit Spray Bulletin. Blacksburg, VA Virginia, West Virginia, and Maryland Cooperative Extension. Pp. 456–419.Google Scholar
Pickel, C., Bentley, W. J., Hasey, J. K., and Day, K. R. 2002. Peach plant bugs. In: UC IPM Pest Management Guidelines: Peach UC ANR Publ. 3454. http://www.ipm.ucdavis.edu/PMG/r602300511.html. Accessed: August 25, 2003.Google Scholar
Powell, C. A. and Forer, L. B. 1982. Reservoirs of tomato ringspot virus in fruit orchards. Plant Dis. 66:583584.Google Scholar
Sánchez, E. E., Giayetto, A., Cichón, L., Fernández, D., Aruani, M. C., and Curetti, M. 2007. Cover crops influence soil properties and tree performance in an organic apple (Malus domestica Borkh) orchard in northern Patagonia. Plant Soil 292:193203.Google Scholar
Sicher, L., Dorigoni, A., and Stringari, G. 1995. Soil management effects on nutritional status and grape vine performance. Acta Hortic. 383:7383.Google Scholar
Singh, H. P., Batish, D. R., Setia, N., and Kohli, R. K. 2005. Herbicidal activity of volatile oils from Eucalyptus citriodora against Parthenium hysterophorus . Ann. Appl. Biol. 146:8994.Google Scholar
Skroch, W. A. and Schribbs, J. M. 1986. Orchard floor management: an overview. Hortscience 21:390394.Google Scholar
Tworkoski, T. 2000. Response of potted peach trees to pruning and grass competition. Hortscience 35:12091212.Google Scholar
Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50:425431.Google Scholar
Tworkoski, T. J. and Glenn, D. M. 1996. Evaluation of ground covers for peach orchard management using a bean bioassay. Pages 111. in: Heflebower, R. F., ed. Proceedings of the Cumberland-Shenandoah Fruit Worker 72nd Annual Conference, Winchester, VA, November 21–22, 1996. Biglerville, PA Mid-Atlantic Regional Fruit Loop.Google Scholar
Tworkoski, T. J. and Glenn, D. M. 2001. Yield, shoot and root growth, and physiological responses of mature peach trees to grass competition. Hortscience 36:12141218.Google Scholar
Tworkoski, T. J. and Glenn, D. M. 2008. Response of young apple trees to grass and irrigation. Int. J. Fruit Sci. 8:89108.Google Scholar
Tworkoski, T. J. and Glenn, D. M. 2010. Long-term effects of managed grass competition and two pruning methods on growth and yield of peach trees. Sci. Hortic. (Amst.) 126:130137.Google Scholar
Tworkoski, T. J. and Young, R. S. 1990. Effects of rate and time of triclopyr application on Virginia creeper management in a West Virginia peach orchard. Hortscience 25:443445.Google Scholar
Vossen, P. and Ingals, C. 2002. Orchard Floor Management. http://cesonoma.ucdavis.edu/HORTIC/orchard_floor.pdf. Accessed: August 25, 2003.Google Scholar
Watson, P. R., Derksen, D. A., and Van Acker, R. C. 2006. The ability of 29 barley cultivars to compete and withstand competition. Weed Sci. 54:783792.Google Scholar
Welker, W. V. and Glenn, D. M. 1988. Growth responses of young peach trees and changes in soil characteristics with sod and conventional planting systems. J. Am. Soc. Hortic. Sci. 113:652656.Google Scholar
Willmott, J., Frecon, J., and Cowgill, W. 2000. Turfgrass for orchard and nursery floor management. New Brunswick, NJ Rutgers New Jersey Agricultural Experiment Station Fact Sheet, FS319. 3 p.Google Scholar