Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T13:14:35.287Z Has data issue: false hasContentIssue false

Widespread Occurrence of Herbicide-Resistant Italian Ryegrass (Lolium multiflorum) in Northern Idaho and Eastern Washington

Published online by Cambridge University Press:  20 January 2017

Traci A. Rauch*
Affiliation:
Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844
Donald C. Thill
Affiliation:
Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844
Seth A. Gersdorf
Affiliation:
Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844
William J. Price
Affiliation:
Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID 83844
*
Corresponding author's E-mail: trauch@uidaho.edu.

Abstract

Persistent use of herbicides has resulted in the selection of many herbicide-resistant weeds worldwide. A survey of 75 fields in the Palouse region of the inland Pacific Northwest was conducted to determine the extent of Italian ryegrass resistance to grass herbicides commonly used in winter wheat-cropping systems. Plants grown from collected seed samples were tested for resistance to diclofop, clodinafop, quizalofop, tralkoxydim, sethoxydim, clethodim, pinoxaden, triasulfuron, mesosulfuron, flucarbazone, imazamox, and flufenacet/metribuzin. Averaged across herbicide families within a herbicide group, some level of resistance was exhibited in 73, 31, and 31% of the populations to the aryloxyphenoxypropionates, cyclohexanediones, and phenylpyrazoline herbicides, respectively, and 39, 53, and 55% of the populations to the sulfonylureas, sulfonylaminocarbonyltriazolinone, and imidazolinone herbicides, respectively. Twelve percent of the populations showed some level of resistance to flufenacet/metribuzin. Cross-resistance to all acetyl coenzyme A carboxylase-inhibiting (group 1) herbicides was observed in 12% of the populations, whereas 25% of the populations were cross-resistant to all acetolactate synthase-inhibiting (group 2) herbicides tested. Of all the populations tested, 7% exhibited multiple resistance to at least one herbicide within all three groups tested. Only 5% of populations were completely susceptible to all 12 herbicides tested. These results indicate that herbicide-resistant Italian ryegrass populations are now common across much of the Palouse region in northern Idaho and eastern Washington.

El uso persistente de herbicidas ha originado la selección de muchas malezas resistentes a ellos a nivel mundial. Una encuesta de 75 parcelas en la región Palouse en el interior del Pacífico Noroeste, EE UU., se llevó al cabo para determinar el grado de resistencia de la Lolium multiflorum L. LOLMU a herbicidas para zacates comúnmente utilizados en sistemas de cultivo de Triticum aestivum L. Se probaron plantas provenientes de muestras de diferentes semillas recolectadas por su resistencia al diclofop, clodinafop, quizalofop, tralkoxydim, sethoxydim, clethodim, pinoxaden, triasulfuron, mesosulfuron, flucarbazone, imazamox, y flufenacet/metribuzin. Promediando entre familias de herbicidas dentro de un grupo de dichos químicos se detectó algún nivel de resistencia en 73, 31, y 31% de las poblaciones a los herbicidas con aryloxyphenoxypropionates, cyclohexanediones, y phenylpyrazoline, respectivamente, y 39, 53, y 55% de las poblaciones al sulfonylureas, sulfonylaminocarbonyltriazolinone, e imidazolinone, respectivamente. El doce por ciento de las poblaciones mostró algún nivel de resistencia al flufenacet/metribuzin. Se observó resistencia cruzada a todos los herbicidas acetílicos CoA inhibidores de carboxylase (grupo 1) en el 12% de las poblaciones, mientras que el 25% exhibió resistencia cruzada a todos los herbicidas inhibidores de acetolactate synthase (grupo 2). De todas las poblaciones estudiadas, 7% mostró múltiple resistencia a cuando menos un herbicida de todos los tres grupos estudiados. Solamente el 5% de las poblaciones fue completamente susceptible a todos los doce herbicidas estudiados. Estos resultados indican que las poblaciones de Lolium multiflorum L. LOLMU resistentes a los herbicidas son actualmente comunes a lo largo de la mayor parte de la región Palouse en el norte de Idaho y el este de Washington.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agresti, A. 1990. Categorical Data Analysis. 1st ed. Hoboken, New Jersey: John Wiley and Sons. 366367.Google Scholar
Ball, D. A., Klepper, B., and Rydrych, D. J. 1995. Comparative aboveground developmental rates for several annual grass weeds and cereal grains. Weed Sci 43:410416.Google Scholar
Beckie, H. J. 2007. Beneficial management practices to combat herbicide-resistant grass weeds in the northern Great Plains. Weed Technol 21:290299.Google Scholar
Brammer, T. A., Mallory-Smith, C. A., and Thill, D. C. 1994. Diclofop-resistant Italian ryegrass in northern Idaho. Proc. West. Soc. Weed Sci 47:10.Google Scholar
Broster, J. C. and Pratley, J. E. 2006. A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Aust. J. Exp. Agric 46:11511160.Google Scholar
Christoffers, M. J., Nandula, V. K., Howatt, K. A., and Wehking, T. R. 2006. Target-site resistance to acetolactate synthase inhibitors in wild mustard (Sinapis arvensis). Weed Sci 54:191197.Google Scholar
Christopher, J. T., Powles, S. B., and Holtum, J. A. M. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol 100:19091913.CrossRefGoogle ScholarPubMed
Délye, C. 2005. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728746.CrossRefGoogle Scholar
[EPA] Environmental Protection Agency 2000. Reregistration Eligibility Decision (RED) Diclofop-Methyl. Washington, DC: Office of Prevention, Pesticides and Toxic Substances. 1.Google Scholar
[EPA] Environmental Protection Agency 2004. Mesosulfuron-methyl Fact Sheet. Washington, DC: Office of Prevention, Pesticides and Toxic Substances. 1.Google Scholar
Gersdorf, S. A. 2009. A survey of Italian ryegrass (Lolium multiflorum) herbicide resistance in northern Idaho and eastern Washington. . Moscow, ID: University of Idaho. 5859.Google Scholar
Gersdorf, S. A. and Thill, D. C. 2008. A survey of Italian ryegrass (Lolium multiflorum) herbicide resistance in northern Idaho and eastern Washington. West. Soc. Weed Sci. Res. Prog. Rep 149.Google Scholar
Heap, I. M. 2009. International Survey of Herbicide-Resistant Weeds. http://www.weedscience.org. Accessed: April 15, 2009.Google Scholar
Justice, G. G., Peeper, T. F., Solie, J. B., and Epplin, F. M. 1994. Net returns from Italian ryegrass (Lolium multiflorum) control in winter wheat (Triticum aestivum). Weed Technol 8:317323.CrossRefGoogle Scholar
Kuk, Y. I., Burgos, N. R., and Scott, R. C. 2008. Resistance profile of diclofop-resistant Italian ryegrass (Lolium multiflorum) to ACCase- and ALS-inhibiting herbicides in Arkansas, USA. Weed Sci 56:614623.Google Scholar
Kuk, Y. I., Burgos, N. R., and Talbert, R. E. 2000. Cross- and multiple resistance of diclofop-resistant Lolium spp. Weed Sci 48:412419.Google Scholar
Liebl, R. A. and Worsham, A. D. 1984. Annual ryegrass interference in wheat. Proc. South. Weed Sci. Soc 37:310.Google Scholar
Llewellyn, R. S. and Powles, S. B. 2001. High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the wheat belt of western Australia. Weed Technol 15:242248.CrossRefGoogle Scholar
Lund, R. E., Cherry, J. S., and Martin, J. M. 1991. Choosing the best by ranking and selection. Agron. J. 83:637643.Google Scholar
Mallory-Smith, C. A., Hulting, A., Thill, D., Morishita, D., and Krenz, J. 2007. Herbicide resistant weeds and their management Pacific Northwest Extension Publications 437. 18.Google Scholar
Mallory-Smith, C. A. and Retzinger, E. J. Jr. 2003. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol 17:605619.Google Scholar
McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., and Duggleby, R. G. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. U. S. A. 103:569573.Google Scholar
Orson, J. H. 1999. The cost to the farmer of herbicide resistance. Weed Technol 13:607611.CrossRefGoogle Scholar
Owen, M. J., Walsh, M. J., Llewellyn, R. S., and Powles, S. B. 2007. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res 58:711718.Google Scholar
Park, K. W. and Mallory Smith, C. A. 2004. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res 44:7177.CrossRefGoogle Scholar
Perez-Fernandez, T. M. and Coble, H. D. 1998. Italian ryegrass (Lolium multiflorum Lam.) response to residual phosphorus levels in winter wheat. Proc. South. Weed Sci. Soc 51:244.Google Scholar
Preston, C. and Powles, S. B. 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum . Heredity 88:813.CrossRefGoogle ScholarPubMed
Tal, A. and Rubin, B. 2004. Occurrence of resistant Chrysanthemum coronarium to ALS inhibiting herbicides. Isr. Resist. Pest Manage. Newsl 13:3133.Google Scholar
Tucker, K. P., Morgan, G. D., Senseman, S. A., Miller, T. D., and Baumann, P. A. 2006. Identification, distribution, and control of Italian ryegrass (Lolium multiflorum) ecotypes with varying levels of sensitivity to triasulfuron in Texas. Weed Technol 20:745750.Google Scholar
[USDA] U.S. Department of Agriculture 1978. Palouse Cooperative River Basin Study. U.S. Department of Agriculture, Soil Conservation Service, U.S. Forest Service, Economics, Statistics, and Cooperative Service. Washington, DC: U.S. Department of Agriculture. 4960.Google Scholar
Yu, Q., Collavo, A., Zheng, M., Owen, M., Sattin, M., and Powles, S. B. 2007. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145:547558.Google Scholar