Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T05:50:23.440Z Has data issue: false hasContentIssue false

An Alternative to Multiple Protoporphyrinogen Oxidase Inhibitor Applications in No-Till Cotton

Published online by Cambridge University Press:  20 January 2017

Charles W. Cahoon
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Alan C. York*
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
David L. Jordan
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Wesley J. Everman
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Richard W. Seagroves
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: alan_york@ncsu.edu.

Abstract

Glyphosate-resistant (GR) Palmer amaranth is a widespread problem in southeastern cotton production areas. Herbicide programs to control this weed in no-till cotton commonly include flumioxazin applied with preplant burndown herbicides approximately 3 wk before planting followed by fomesafen applied PRE and then glufosinate or glyphosate applied POST. Flumioxazin and fomesafen are both protoporphyrinogen oxidase (PPO) inhibitors. Multiple yearly applications of PPO inhibitors in cotton, along with widespread use of PPO inhibitors in rotational crops, raise concerns over possible selection for PPO resistance in Palmer amaranth. An experiment was conducted to determine the potential to substitute diuron for one of the PPO inhibitors in no-till cotton. Palmer amaranth control by diuron and fomesafen applied PRE varied by location, but fomesafen was generally more effective. Control by both herbicides was inadequate when timely rainfall was not received for activation. Palmer amaranth control was more consistent when programs included a preplant residual herbicide. Applied preplant, flumioxazin was more effective than diuron. Programs with diuron preplant followed by fomesafen PRE were as effective as flumioxazin preplant followed by fomesafen only if fomesafen was activated in a timely manner. Programs with flumioxazin preplant followed by diuron PRE were as effective as flumioxazin preplant followed by fomesafen PRE at all locations, regardless of timely activation of the PRE herbicide. As opposed to flumioxazin preplant followed by fomesafen PRE, which exposes Palmer amaranth to two PPO-inhibiting herbicides, one could reduce selection pressure by using flumioxazin preplant followed by diuron PRE without sacrificing Palmer amaranth control or cotton yield.

Amaranthus palmeri resistente a glyphosate (GR) es un problema ampliamente diseminado en las áreas de producción de algodón en el sureste de Estados Unidos. Los programas de herbicidas para el control de esta maleza en algodón bajo labranza cero incluyen flumioxazin aplicado con herbicidas para quema total en pre-siembra, aproximadamente 3 semanas antes de la siembra seguido de fomesafen aplicado PRE y después glufosinate o glyphosate aplicados POST. Flumioxazin y fomesafen son ambos inhibidores de protoporphyrinogen oxidase (PPO). Aplicaciones anuales múltiples de inhibidores PPO en algodón, además del amplio uso de inhibidores PPO en cultivos rotacionales, genera preocupación sobre la posible selección de resistencia a herbicidas inhibidores de PPO en A. palmeri. Se realizó un experimento para determinar el potencial de sustituir diuron por uno de los inhibidores PPO en algodón bajo labranza cero. El control de A. palmeri con diuron y fomesafen aplicados PRE varió según la localidad, pero fomesafen fue generalmente más efectivo. El control brindado por ambos herbicidas fue inadecuado cuando no se recibió lluvia en el momento necesario para su activación. El control de A. palmeri fue más consistente cuando los programas incluyeron un herbicida residual pre-siembra. Al aplicarse pre-siembra, flumioxazin fue más efectivo que diuron. Los programas con diuron pre-siembra seguidos de fomesafen PRE fueron tan efectivos como flumioxazin pre-siembra seguido de fomesafen solamente si fomesafen fue activado en el momento adecuado. Los programas con flumioxazin pre-siembra seguidos de diuron PRE fueron tan efectivos como flumioxazin pre-siembra seguido de fomesafen PRE en todas las localidades, sin importar el momento de activación del herbicida PRE. En contraste a programas con flumioxazin pre-siembra seguido de fomesafen PRE, los cuales exponen a A. palmeri a dos herbicidas inhibidores PPO, uno podría reducir la presión de selección al usar flumioxazin pre-siembra seguido de diuron PRE sin sacrificar el control de A. palmeri o el rendimiento del algodón.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2013a) Direx® 4L herbicide label. Raleigh, NC: Makhteshim Agan of North America. 25 pGoogle Scholar
Anonymous (2013b) Prowl® H2O herbicide label. Research Triangle Park, NC: BASF Ag Products. 37 pGoogle Scholar
Anonymous (2013c) Valor® herbicide label. Walnut Creek, CA: Valent U.S.A. Corporation. 27 pGoogle Scholar
Banks, PA, Robinson, EI (1982) The influence of straw mulch on the reception and persistence of metribuzin. Weed Sci 30:164168 Google Scholar
Banks, PA, Robinson, EI (1986) Soil reception and activity of acetochlor, alachlor, and metolachlor as affected by wheat (Triticum aestivum L.) straw and irrigation. Weed Sci 34:607611 Google Scholar
Barnett, KA, Culpepper, AS, York, AC, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri) control by glufosinate plus fluometuron applied postemergence to WideStrike® cotton. Weed Technol 27:291297 Google Scholar
Batts, RB, York, AC (1997) Weed management in no-till cotton (Gossypium hirsutum) with thiazopyr. Weed Technol 11:580585 Google Scholar
Bond, JA, Oliver, LR, Stephenson, DO IV (2006) Response of Palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed Technol 20:885892 Google Scholar
Bradshaw, LD, Pagette, SR, Kimball, SL, Wells, BH (1997) Perspectives on glyphosate resistance. Weed Technol 11:189198 Google Scholar
Branson, JW, Smith, KL, Barrentine, JL (2005) Comparison of trifloxysulfuron and pyrithiobac in glyphosate-resistant and bromoxynil-resistant cotton. Weed Technol 19:404410 Google Scholar
Corbett, JL, Askew, SD, Thomas, WE, Wilcut, JW (2004) Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol 18:443453 Google Scholar
Culpepper, AS, Grey, TL, Vencill, WK, Kichler, JM, Webster, TM, Brown, SM, York, AC, Davis, JW, Hanna, WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620626 Google Scholar
Culpepper, AS, Kichler, J, York, AC (2013) UGA Programs for Controlling Palmer Amaranth in 2013 Cotton. Athens, GA: The University of Georgia Cooperative Extension Service Publ. C 952. http://www.caes.uga.edu/Publications/pubDetail.cfm?pk_id=7808. Accessed April 5, 2013Google Scholar
Culpepper, AS, Sosnoskie, L (2013) Glyphosate-resistant Palmer amaranth increases herbicide use, tillage, and hand weeding in Georgia cotton. Weed Sci Soc Am. Abstr 270 [Abstract]Google Scholar
Culpepper, AS, Webster, TM, Sosnoskie, LM, York, AC (2010) Glyphosate-resistant Palmer amaranth in the United States. Pages 195212 in Nandula, VK, ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ: Wiley Google Scholar
Culpepper, AS, York, AC (1997) Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol 11:335345 Google Scholar
Culpepper, AS, York, AC (1998) Weed management in glyphosate-tolerant cotton. J Cotton Sci 2:174185 Google Scholar
Culpepper, AS, York, AC (1999) Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technol 13:411420 Google Scholar
Culpepper, AS, York, AC, Roberts, P, Whitaker, JR (2009) Weed control and crop response to glufosinate applied to ‘PHY 485 WRF' cotton. Weed Technol 23:356362 Google Scholar
Dunnett, CW (1955) A multicomparisons procedure for comparing several treatments with a control. J Am Stat Assoc 50:10961121 Google Scholar
Ehleringer, J (1983) Ecophysiology of Amaranthus palmeri, a Sonoran desert summer annual. Oecologia 57:107112 Google Scholar
Everman, WJ, Clewis, SB, York, AC, Wilcut, JW (2009) Weed control and yield with flumioxazin, fomesafen, and S-metolachlor systems for glufosinate-resistant cotton residual weed management. Weed Technol 23:391397 Google Scholar
Faircloth, WH, Patterson, MG, Monks, CD, Goodman, WR (2001) Weed management programs for glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technol 15:544551 Google Scholar
Frans, RE, Talbert, R, Marx, D, Crowley, H (1986) Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, ND, ed. Research Methods in Weed Science. Champaign, IL: Southern Weed Science Society Google Scholar
Gaston, LA, Boquet, DJ, Bosch, MA (2003) Pendimethalin wash-off from cover crop residues and degradation in a loessial soil. Commun Soil Sci Plant Anal 34:25252527 Google Scholar
Gianessi, LP (2008) Economic impacts of glyphosate resistant crops. Pest Manag Sci 64:3346–352Google Scholar
Heap, I (2013) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed April 5, 2013Google Scholar
Hixson, AC (2008) Soil properties affect simazine and saflufenacil fate, behavior, and performance. Ph.D Dissertation. Raleigh, NC: North Carolina State University. 226 pGoogle Scholar
Hoffner, A, Jordan, D, York, A (2012) Distribution of herbicide resistance in Palmer amaranth populations across North Carolina. PO19. Page 87 in Proceedings 7th International Integrated Pest Management Conference. Urbana-Champaign, IL Illinois Online and Continuing Education.Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Isensee, AR, Sadeghi, AM, Mylavarapu, RS (1998) Impact of burn-down herbicides on atrazine washoff from vegetation. Chemosphere 36:1319 Google Scholar
Jha, P, Norsworthy, JK, Riley, MB, Bielenberg, DG, Bridges, D Jr. (2008) Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci 56:729734 Google Scholar
Keely, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199204 Google Scholar
Legleiter, TR, Bradley, KW (2008) Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci 56:582587 Google Scholar
MacRae, AW, Culpepper, AS, Webster, TM, Sosnoskie, LM, Kichler, JM (2008) Glyphosate-resistant Palmer amaranth competition with Roundup Ready cotton. Page 1696 in Proceedings of the 2008 Beltwide Cotton Conferences. Nashville, TN National Cotton Council of America Google Scholar
Marshall, M (2013) Weed Control in Cotton. Clemson, SC: Clemson University Cooperative Extension Service. http://www.clemson.edu/extension/rowcrops/pest/index.html. Accessed April 5, 2013Google Scholar
Mehlich, A (1984) Photometric determination of humic matter in soils, a proposed method. Commun Soil Sci Plant Anal 15:14171422 Google Scholar
Monks, DM, Oliver, LR (1988) Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci 36:770774 Google Scholar
Morgan, GD, Baumann, PA, Chandler, JM (2001) Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol 15:408412 Google Scholar
[NCDA&CS] North Carolina Department of Agriculture and Consumer Services. 2013. Annual Crop Summary. http://www.ncagr.gov/stats/index.htm. Accessed April 5, 2013Google Scholar
Norsworthy, JK, Still, J, Johnson, DB, Bangarawa, SK, Smith, KL (2010) Influence of rainfall on activation of residual cotton herbicides for controlling Palmer amaranth. Page 1653 in Proceedings of the 2010 Beltwide Cotton Conferences. Memphis, TN National Cotton Council of America Google Scholar
Patzoldt, WL, Tranel, PJ, Hager, AG (2005) A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci 53:3036 Google Scholar
Place, G, Bowman, D, Burton, M, Rufty, T (2008) Root penetration through a high bulk density soil layer: differential response of a crop and weed species. Plant Soil 307:179190 Google Scholar
Price, AJ, Balkcom, KS, Culpepper, AS, Kelton, JA, Nichols, RL, Schomberg, H (2011) Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. J Soil Water Conserv 66:265275 Google Scholar
Price, AJ, Wilcut, JW, Cranmer, JR (2002) Flumioxazin preplant burndown weed management in strip-tillage cotton (Gossypium hirsutum) planted into wheat (Triticum aestivum). Weed Technol 16:762767 Google Scholar
Reddy, KN, Locke, MA (1996) Imazaquin spray retention, foliar washoff, and runoff losses under simulated rainfall. Pestic Sci 48:179187 Google Scholar
Reddy, KN, Locke, MA, Wagner, SC, Zablotowicz, RM, Gaston, LA, Smeda, RJ (1995) Chlorimuron ethyl sorption and desorption kinetics in soils and herbicide-desiccated cover crop residues. J Agric Food Chem 43:27522757 Google Scholar
Riggins, CW, Tranel, PJ (2012) Will the Amaranthus tuberculatus resistance mechanism to PPO-inhibiting herbicides evolve in other Amaranthus species? Inter J Agron. Article ID 305764, 7 pages. DOI: Google Scholar
Rowland, MW, Murray, DS, Verhalen, LM (1999) Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci 45:305309 Google Scholar
Scott, RC, Askew, SD, Wilcut, JW (2002) Glyphosate systems for weed control in glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technol 16:191198 Google Scholar
Scott, B, Smith, K (2011) Prevention and Control of Glyphosate-Resistant Pigweed in Soybean and Cotton. Little Rock, AR: University of Arkansas Cooperative Extension Service Pub. FSA2152. http://www.uaex.edu/other_areas/publications/pdf/fsa-2152.pdf. Accessed April 5, 2013Google Scholar
Sellers, BA, Smeda, RJ, Johnson, WG, Kendig, JA, Ellersieck, MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333 Google Scholar
Shoup, DE, Al-Khatib, K, Peterson, DE (2003) Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 51:145150 Google Scholar
Smith, DT, Baker, RV, Steele, GL (2000) Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol 14:122126 Google Scholar
Sosnoskie, LM, Culpepper, AS (2012) Changes in cotton weed management practices following the development of glyphosate-resistant Palmer amaranth. Page 1520 in Proceedings of the 2012 Beltwide Cotton Conferences. Memphis, TN National Cotton Council of America Google Scholar
Sosnoskie, LM, Kichler, JM, Wallace, RD, Culpepper, AS (2011) Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Technol 59:321325 Google Scholar
Steckel, LE, Stephenson, D IV, Bond, J, Stewart, SD, Barnett, KA (2012) Evaluation of WideStrike® Flex cotton response to over-the-top glufosinate tank mixtures. J Cotton Sci 16:8895 Google Scholar
Teasdale, JR, Daughtry, CST (1993) Weed suppression by live and desiccated hairy vetch (Vicia villosa). Weed Sci 41:207212 Google Scholar
[USDA-ERS] U.S. Department of Agriculture–Economic Research Service (2012) Adoption of Genetically Engineered Crops in the U.S. http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx. Accessed April 5, 2013Google Scholar
Vencill, WK, Nichols, RL, Webster, TM, Soteres, JK, Mallory-Smith, C, Burgos, NR, Johnson, WG, McClelland, MR (2012) Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci 60 (Special Issue):230 Google Scholar
Webster, TM (2009) Weed survey—southern states: broadleaf crops subsection. Proc South Weed Sci Soc 62:510525 Google Scholar
Wetzel, DK, Horak, MJ, Skinner, DZ (1999) Use of PCR-based molecular markers to identify weedy Amaranthus species. Weed Sci 47:518523 Google Scholar
Whitaker, JR (2009) Distribution, Biology, and Management of Glyphosate-Resistant Palmer Amaranth in North Carolina. Ph.D Dissertation. Raleigh, NC: North Carolina State University. 231 pGoogle Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2010) Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24:403410 Google Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2011a) Weed management with glyphosate- and glufosinate-based systems in PHY 485 WRF cotton. Weed Technol 25:183191 Google Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS, Sosnoskie, LM (2011b) Residual herbicides for Palmer amaranth control. J Cotton Sci 15:8999 Google Scholar
Wilcut, JW, York, AC, Jordan, DL (1995) Weed management systems for oil seed crops. Pages 343400 in Smith, AE, ed. Handbook of Weed Management Systems. New York: Marcel Dekker Google Scholar
Wilson, RG, Young, BG, Matthews, JL, Weller, SC, Johnson, WG, Jordan, DL, Owen, MDK, Dixon, PM, Shaw, DR (2011) Benchmark study on glyphosate-resistant cropping systems in the United States. Part 4: weed management practices and effects on weed populations and soil seed banks. Pest Manag Sci. 67:771780 Google Scholar
Wright, SR, Jennette, MW, Coble, HD, Rufty, TW (1999) Root morphology of young Glycine max, Senna obtusifolia, and Amaranthus palmeri . Weed Sci 47:706711 Google Scholar
York, AC (2013) Weed management in cotton. Pages 66122 in 2013 Cotton Information. Raleigh, NC: North Carolina Cooperative Extension Service Publ. AG-417Google Scholar