Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:18:06.989Z Has data issue: false hasContentIssue false

Annual Strawberry Response to Clopyralid Applied During Fruiting

Published online by Cambridge University Press:  20 January 2017

Clinton J. Hunnicutt
Affiliation:
Horticultural Sciences Department, University of Florida, GCREC, Wimauma, FL 33598
Andrew W. MacRae
Affiliation:
Horticultural Sciences Department, University of Florida, GCREC, Wimauma, FL 33598
Peter J. Dittmar*
Affiliation:
Horticultural Sciences Department, Gainesville, FL 32611
Joseph W. Noling
Affiliation:
University of Florida, CREC, Lake Alfred, FL 33850
Jason A. Ferrell
Affiliation:
University of Florida, Agronomy Department, Gainesville, FL 32611
Cristiane Alves
Affiliation:
Horticultural Sciences Department, University of Florida, GCREC, Wimauma, FL 33598
Tyler P. Jacoby
Affiliation:
Horticultural Sciences Department, University of Florida, GCREC, Wimauma, FL 33598
*
Corresponding author's E-mail: pdittmar@ufl.edu

Abstract

As the amount of methyl bromide approved for use in Florida strawberry diminishes, growers are faced with a forced transition to alternative fumigants. Many of these methyl bromide alternatives have been associated with reductions in weed control, requiring additional but complementary measures. POST herbicide options for annual strawberry are limited, resulting in significant portions of the strawberry acreage in Florida being hand-weeded when troublesome weeds escape conventional control methods. Strawberry has shown acceptable tolerance to clopyralid in other areas and production systems; however, its integration into the Florida production system and ramifications of applications during fruiting warrants further research. Eight trials were conducted, with three common strawberry cultivars grown in West Central Florida subjected to POST spray and drip-tape-injected applications of clopyralid. Formation of new strawberry leaves was not affected by clopyralid application, except for a reduction in new leaves of the cultivar ‘Strawberry Festival' at the highest rate of application of 261 g ae ha−1 in comparison with the nontreated control. Strawberry leaf malformation was best explained by an exponential growth equation, whereas marketable yield followed the trend of a Weibull peak. At the maximum labeled rate (66 g ha−1), leaf malformation was less than 5% for all cultivars tested, and marketable yield was estimated at 104% of the nontreated control.

Al reducirse la cantidad de methyl bromide aprobada para el uso en la producción de fresas en Florida, los productores deben enfrentar una transición forzada a fumigantes alternativos. Muchas de estas alternativas a methyl bromide han sido asociadas con reducciones en el control de malezas, requiriéndose así medidas complementarias. La fresa ha mostrado una tolerancia aceptable a clopyralid en otras áreas y sistemas de producción. Sin embargo, su incorporación en los sistemas de producción de Florida y lo que esto podría implicar para las aplicaciones durante la producción del fruto requiere más investigación. Se realizaron ocho ensayos con tres cultivares comunes de fresa producidos en el Centro Oeste de Florida y que fueron sometidos a aspersiones POST y a aplicaciones inyectadas a través de la cinta de goteo con clopyralid. La formación de hojas nuevas de la fresa no fue afectada por la aplicación de clopyralid, excepto por una reducción de las hojas nuevas en el cultivar ‘Strawberry Festival' con la dosis de aplicación más alta de 261 g ae ha−1 en comparación con el testigo no tratado. La malformación de hojas de la fresa fue explicada mejor con una ecuación de crecimiento exponencial, mientras que el rendimiento de fruta comercializable siguió una tendencia de un pico Weibull. A la máxima dosis de la etiqueta (66 g ha−1), la malformación de hojas fue inferior al 5% en todos los cultivares evaluados, y el rendimiento comercializable fue estimado en 104% en comparación con el control no-tratado.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Calabrese, E. J. 2005. Historical blunders: how toxicology got the dose–response relationship half right. Cell. Mol. Biol. 51:643654.Google Scholar
Cedergreen, N. 2008. Herbicides can stimulate plant growth. Weed Res. 48:429438.Google Scholar
Chandler, C. K., Legard, D. E., and Noling, J. W. 2001. Performance of strawberry cultivars on fumigated and nonfumigated soil in Florida. HortTechnology. 11:6971.Google Scholar
Clay, D. V. and Andrews, L. 1984. The tolerance of strawberries to clopyralid: effect of crop age, herbicide dose and application date. Aspects Appl. Biol. 8:151158.Google Scholar
Darnell, R. L. 2003. Strawberry growth and development. Pages 310 in Childers, N. F., ed. The Strawberry: A Book for Growers, Others. Gainesville, FL Dr. Norman F. Childers Publications.Google Scholar
Darrow, G. M. 1930. Experimental studies in the growth and development of strawberry plants. J. Agr. Res. 41:307325.Google Scholar
Daugovish, O., Fennimore, S. A., and Mochizuki, M. J. 2008. Integration of oxyfluorfen into strawberry (Fragaria × ananassa) weed management programs. Weed Technol. 22:685690.Google Scholar
Ferguson, W. and Padula, A. 1994. Economic Effects of Banning Methyl bromide for Soil Fumigation. Agricultural Economics. Volume 677, Washington, DC U.S. Department of Agriculture/Economic Research Service.Google Scholar
Figueroa, R. A. and Doohan, D.J. 2006. Selectivity and efficacy of clopyralid on strawberry (Fragaria × ananassa). Weed Technol. 20:101103.Google Scholar
Forney, C. F. and Breen, P. J. 1985. Dry matter partitioning and assimilation in fruiting and deblossomed strawberry. J. Am. Soc. Hort. Sci. 110:181185.Google Scholar
Gilreath, J. P. and Santos, B. M. 2005. Weed management with oxyfluorfen and napropamide in mulched strawberry. Weed Technol. 19:325328.Google Scholar
Honaganahalli, P. S. and Seiber, J. N. 1996. Health and environmental concerns over the use of fumigants in agriculture: the case of methyl bromide. Am. Chem. Soc. Symp. Ser. 652: 113.Google Scholar
Macias-Rodriguez, L., Quero, E., and Lopez, M. G. 2002. Carbohydrate differences in strawberry crowns and fruit (Fragaria × ananassa) during plant development. J. Agric. Food Chem. 50:33173321.Google Scholar
McMurray, G. L., Monks, D. W., and Leidy, R. B. 1996. Clopyralid use in strawberries (Fragaria × ananassa) grown on plastic mulch. Weed Sci. 44:350354.Google Scholar
Mossler, M. A. and Nesheim, O. N. 2004. Strawberry pest management strategic plant (PMSP). University of Florida IFAS extension. Electronic Data Information Source. http://edis.ifas.ufl.edu/pdffiles/PI/PI06300.pdf. Accessed: March 22, 2012.Google Scholar
Mossler, M. A. 2010. Florida Crop/Pest Management Profiles: Strawberry. University of Florida/IFAS Extension. Electronic Data Information Source. http://edis.ifas.ufl.edu/pi037. Accessed: March 28, 2012.Google Scholar
[NASS] National Agricultural Statistics Service. 2011. United States Department of Agriculture (USDA). http://www.nass.usda.gov.Google Scholar
Noling, J. W., Botts, D. A., and MacRae, A. W. 2011. Alternatives to methyl bromide soil fumigation for Florida vegetable production. Pages 4754 in Olson, S. M. and Santos, B., eds. Vegetable Production Handbook for Florida 2011–2012. University of Florida/IFAS Extension.Google Scholar
Pfleeger, T., Blakeley-Smith, M., King, G., Lee, E. H., Plocher, M., and Olszyk, D. 2012. The effects of glyphosate and aminopyralid on a multi-species plant field trial. Ecotoxicology 10.1007/s10646-012-0912-5.Google Scholar
Rogers, J. L., Doohan, D. J., Robinson, A. R., Jensen, K.I.L., and Gaul, S. O. 2001. Fluazifol-P inhibits terbacil metabolism in strawberry (Fragaria × ananassa). Weed Technol. 15:320326.Google Scholar
Santos, B. M., Peres, N. A., Price, J. F., Chandler, C. K., Whitaker, V. M., Stall, W. M., Olson, S. M., Smith, S. A., and Simonne, E. H. 2011. Strawberry production in Florida. Pages 271282 in Olson, S. M. and Santos, B., eds. Vegetable Production Handbook for Florida 2011–2012. University of Florida/IFAS Extension.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed.Lawrence, KS Weed Science Society of America. Pp. 333334.Google Scholar
Snodgrass, C., Ozores-Hampton, M., Macrae, A., Noling, J., Whidden, A., and McAvoy, G. 2011. Current fumigation practices among tomato, strawberry, and pepper growers: survey results. Available at http://flagexpo.ifas.ufl.edu/2011/AgExpo11presentations.htm. Accessed April 2, 2012.Google Scholar
Stall, W. M. 2008. Weed control in strawberry. University of Florida/IFAS Extension. Electronic Data Information Source. Available at http://edis.ifas.ufl.edu/wg037 Google Scholar