Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T12:54:08.855Z Has data issue: false hasContentIssue false

Are Herbicide mixtures useful for Delaying the Rapid Evolution of Resistance? a Case Study

Published online by Cambridge University Press:  12 June 2017

Roger P. Wrubel
Affiliation:
Dep. Urban and Environ. Policy, Tufts Univ., Medford, MA 02l55
Jonathan Gressel
Affiliation:
Dep. Plant Genet., Weizmann Inst. Sci. Rehovot IL76100, Israel

Abstract

Mixtures of herbicides have been proposed as strategies to prevent or delay the evolution of resistance to the resistance-prone sulfonylurea and imidazolinone herbicides that inhibit acetolactate synthase. These herbicides have become or are becoming widely used in soybean, wheat, rice, and other major crops. For a mixture to be efficacious in preventing resistance, the less resistance-prone component(s) should have the following traits compared to the vulnerable herbicide: a) control the same spectra of weeds; b) have the same persistence; c) have a different target site; d) be degraded in a different manner; and e) preferably exert negative cross-resistance. We compared the proposed mixing partners for use with several widely used acetolactate synthase inhibiting herbicides to these criteria and found that: a) all have somewhat different weed spectra; e.g. none control common cocklebur as well as imazaquin or imazethapyr in soybean, or kochia as well as chlorsulfuron in winter wheat; b) all are far less persistent than these vulnerable herbicides. Less persistent sulfonylureas are now on the market but are in limited use. Late in the season, the mixing partner is not present while the vulnerable herbicide remains active; c) most have different target sites; d) in soybean most mixing partners are degraded differently than vulnerable herbicides. In wheat virtually all herbicides used without safeners are degraded by monooxygenases, thus it is impossible to meet this criterion in this crop; e) none of the mixing partners exert negative cross-resistance. The present mixtures may have superior or more cost-effective weed control properties than the acetolactate synthase inhibitors used alone, but they do not meet all the criteria for resistance management. Not meeting the key criteria of identical control spectra and equal persistence aggravates future resistance problems, as has happened with insecticides.

Type
Review/Analysis
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Alcocer-Ruthling, M, Thill, D. C., and Shafii, B. 1992. Seed biology of sulfonylurea-resistant and -susceptible biotypes of prickly lettuce (Lactuca serriola). Weed Technol. 6:858864.CrossRefGoogle Scholar
2. Alcocer-Ruthling, M., Thill, D. C., and Shafii, B. 1992. Differential competitiveness of sulfonylurea-resistant and -susceptible prickly lettuce (Lactuca serriola). Weed Technol. 6:303309.CrossRefGoogle Scholar
3. Anonymous. 1988. Agricultural Resources Inputs Situation and Outlook Report. AR-15. Resources and Technol. Div., Economic Res. Service, U.S. Dep. Agric., Washington, DC.Google Scholar
4. Anonymous. 1990. Herbicide resistance—A call for industry action. Weed 'Technol. 4:215219.CrossRefGoogle Scholar
5. Anonymous. 1990. Agricultural Resources Inputs Situation and Outlook Report. AR-17. Economic Res. Service, U.S. Dep. Agric., Washington, DC.Google Scholar
6. Anonymous. 1991. Herbicide Resistance in Weeds: An Overview. Cyanamid Agricultural Division, Wayne, NJ. 16 p.Google Scholar
7. Anonymous. 1991. Position Statement: Weed Resistance/Imidazolinone Herbicides. American Cyanamid Company, Agricultural Products Division, Wayne, NJ. Pub. PE-0427 Rev. 12/91. 2 p.Google Scholar
8. Anonymous. 1991. Agricultural Chemical Usage: 1990 Field Crops Summary, Ag Ch 1 (91). U.S. Dep. Agric., Nat. Agric. Statistics Service. Washington, DC. 154 p.Google Scholar
9. Anonymous. 1992. Agricultural Chemical Usage: 1991 Field Crops Summary. U.S. Dep. Agric., Nat. Agric. Statistics Service. Washington, DC. 111 p.Google Scholar
10. Anonymous. 1992. Weed Control Manual. Meister Publishing Co. Willoughby, OH. 442 p.Google Scholar
11. Anonymous 1992. Illinois Agronomy Handbook 1993–1994. Univ. of Illinois at Urbana-Champaign, College of Agric., Coop. Ext. Serv., Circ. 1321. p. 98124.Google Scholar
12. Anonymous 1992. Pursuit on Corn. American Cyanamid Company, Agricultural Products Division, Wayne, NJ. Publ. PE-17169. 2 p.Google Scholar
13. Anonymous. 1993. Guidelines for Managing Resistance to ALS/AHAS-Inhibiting Herbicides. Herbicide Resistance Action Committee, ALS/AHAS Inhibitor Resistance Working Group. 5 p.Google Scholar
14. Anonymous. 1993. Agricultural Chemical Usage: 1992 Field Crops Summary. Ag Ch 1 (93). U.S. Dep. Agric., Nat. Agric. Statistics Service. Washington, DC. 118 p.Google Scholar
15. Anonymous. 1993. 1992 Cropping Practices Survey Database. U.S. Dep. Agric., Economic Res. Service, Resource and Technol. Div., Washington, DC.Google Scholar
16. Anonymous. 1993. Du Pont Agricultural Product: Product Labels. E.I. Du Pont deNemours and Company, Wilmington, DE. 386 p.Google Scholar
17. Anonymous 1993. RTD updates: Cropping Practices. Resources Technol. Div., Economic Res. Service, U.S. Dep. Agric. July, 1993.4 p.Google Scholar
18. Arlt, K. and Jüttersonke, B. 1992. Zur negativen Kreizresistenz bei triazine resisten unkranten, inbesondere Chenopodium album L. Z. Pflanzenkrank. Pflanzensch. Special issue 13:483486.Google Scholar
19. Bandeen, J. D., Stephenson, G. R., and Cowett, E. R. 1982. Discovery and distribution of herbicide-resistant weeds in North America. p. 930 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley & Sons, New York.Google Scholar
20. Bewley, J. D. and Black, M. 1982. Physiology and Biochemistry of Seeds in Relation to Germination. Volume II: Viability, Dormancy and Environmental Control. Springer-Verlag, Berlin. p. 6667.CrossRefGoogle Scholar
21. Beyer, E. M., Duffy, M. J., Hay, J. V., and Schleuter, D. D. 1988. Sulfonylureas. p. 118169 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation and Mode of Action. Vol. 3. Marcel Dekker, New York.Google Scholar
22. Burnet, M.W.M., Christopher, J. T., Holtum, J.A.M., and Powles, S. B. 1994. Identification of two mechanisms of sulfonylurea resistance within one population of rigid ryegrass (Lolium rigidum) using a selective germination medium. Weed Sci. (in press).CrossRefGoogle Scholar
23. Butters, J., Clark, J., and Hollomon, D. W. 1986. Recombination as a means of predicting fungicide resistance in barley powdery mildew. p. 561566 in Br. Crop Prot. Conf.—Pests and Diseases.Google Scholar
24. Christopher, J. T., Powles, S. B., and Holtum, J.A.M. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol. 100:19091913.CrossRefGoogle ScholarPubMed
25. Christopher, J. T., Powles, S. B., Holtum, J.A.M., and Liljegren, D. R. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). II. Chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiol. 95:10361043.CrossRefGoogle ScholarPubMed
26. Cohen, Y. and Levy, Y. 1990. Joint action of fungicides in mixtures: theory and practice. Phytoparasitica 18:159169.CrossRefGoogle Scholar
27. Cotterman, J. C. and Saari, L. L. 1992. Rapid metabolic inactivation in the basis for cross-resistance to chlorsulfuron in diclofop-methyl-resistant rigid ryegrass (Lolium rigidum) SR4/84. Pestic. Biochem. Physiol. 43:182192.CrossRefGoogle Scholar
28. Curtis, C. F. 1985. Theoretical models of the use of insecticide mixtures for the management of resistance. Bull. Entomol. Res. 75:259265.CrossRefGoogle Scholar
29. Friesen, L. F., Morrison, I. N., Rashid, A., and Devine, M. D. 1993. Response of a chlorosulfuron-resistant biotype of Kochia scoparia to sulfonylurea and alternative herbicides. Weed Sci. 41:100106.CrossRefGoogle Scholar
30. Gabard, J. M., Charest, P. J., Iver, V. N., and Miki, B. L. 1989. Cross-resistance to short residual sulfonylurea herbicides to transgenic tobacco plants. Plant Physiol. 91:574580.CrossRefGoogle ScholarPubMed
31. Gerwick, B. C., Subramanian, M. V., Loney-Gallant, V. I., and Chandler, D. P. 1990. Mechanism of action of the 1,2,4-triazolo[1,5-α]pyrimidines. Pestic. Sci. 29:357364.CrossRefGoogle Scholar
32. Gill, M. and Daberkow, S. 1991. Cropping pattern comparisons between 1989 and 1988. Agric. Resources Inputs Situation and Outlook Report. AR-21: 4347.Google Scholar
33. Gressel, J. 1987. Appearance of single and multi-group herbicide resistances and strategies for their prevention. p. 479488 in Br. Crop Protect. Conf.—Weeds. Google Scholar
34. Gressel, J. 1988. Multiple resistances to wheat selective herbicides: New challenges to molecular biology. Oxford Surv. Plant Molec. Cell Biol. 5:195203.Google Scholar
35. Gressel, J. 1992. Addressing real weed science needs with innovations. Weed Technol. 6:509525.CrossRefGoogle Scholar
36. Gressel, J., Ammon, H. U., Fogelfors, H., Gasquez, J., Kay, Q.O.N., and Kees, H. 1982. Discovery and distribution of herbicide resistant weeds outside North America. p. 3256 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley & Sons, New York.Google Scholar
37. Gressel, J. and Segel, L. A. 1978. The paucity of genetic adaptive resistance of plants to herbicides: possible biological reasons and implications. J. Theor. Biol. 75:349371.CrossRefGoogle Scholar
38. Gressel, J. and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. p. 325348 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley & Sons, New York.Google Scholar
39. Gressel, J. and Segel, L. A. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198.CrossRefGoogle Scholar
40. Gressel, J. and Segel, L. A. 1990. Negative cross-resistance; a possible key to atrazine resistance management: a call for whole plant data. Z. Naturforsch. 45c:470473.CrossRefGoogle Scholar
41. Hall, L. M. and Devine, M. 1990. Cross resistance of a chlorsulfuron resistant biotype of Stellaria media to a triazolopyrimidine herbicide. Plant Physiol. 93:962966.CrossRefGoogle ScholarPubMed
42. Hattori, J., Rutledge, R., Labbe, H., Brown, D., Sunohara, G., and Miki, B. 1991. Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxyacid synthase gene with separate mutations for selective resistance. Mol. Gen. Genet. 232:167173.CrossRefGoogle Scholar
43. Herring, D. C., Guenzi, A. C., Peeper, T. F., and Claypool, P. L. 1992. Growth response of wheat (Triticum aestivum) callus to imazapyr and in vitro selection for resistance. Weed Sci. 40:174179.CrossRefGoogle Scholar
44. Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Univ. of Hawaii Press, Honolulu. Reissued (1991) by Kreiger Publ. Co., Malabar, FL. p. 479–481.Google Scholar
45. Holt, J. S. 1990. Fitness and ecological adaptability of herbicide-resistant biotypes. p. 419429 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrichemicals: From Fundamental Research to Practical Strategies. Am. Chem. Soc. Symp. Ser. 421, Washington DC.CrossRefGoogle Scholar
46. Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4:141149.CrossRefGoogle Scholar
47. Holt, J. S., Powles, S. B., and Holtum, J.A.M. 1993. Mechanisms and agronomic aspects of herbicide resistance. Annu. Rev. Plant Physiol. Plant Molec. Biol. 44:203209.CrossRefGoogle Scholar
48. Iler, S. E., Swanton, C. J., and Pauls, K. P. 1993. In vitro selection of imazethapyr-tolerant tomato. Weed Sci. 41:1217.CrossRefGoogle Scholar
49. Josepovits, G. and Dobrovolszky, A. 1985. A novel mathematical approach to the prevention of fungicide resistance. Pestic. Sci. 16:1722.CrossRefGoogle Scholar
50. Kable, P. F. and Jeffrey, H. 1980. Selection for tolerance in organisms exposed to sprays of biocide mixtures: A theoretical model. Phytopathology 70:812.CrossRefGoogle Scholar
51. Kemp, M. S., Moss, S. R., and Thomas, T. H. 1990. Herbicide resistance in Alopecums myosuroides . p. 376393 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrichemicals: From Fundamental Research to Practical Strategies. Am. Chem. Soc. Symp. Ser. 421, Washington, DC.CrossRefGoogle Scholar
52. LaRossa, R. A. and Schloss, J. V. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium . J. Biol. Chem. 259:87538758.CrossRefGoogle ScholarPubMed
53. LeBaron, H. M. 1989. Herbicide resistance in plants. p. 91102 in MacDonald, J. F., ed. NABC Report 1 Biotechnology and Sustainable Agriculture: Policy Alternatives. National Agricultural Biotechnology Council, Ithaca, NY.Google Scholar
54. LeBaron, H. M. 1991. Distribution and seriousness of herbicide resistant weed infestations worldwide. p. 2744 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinman, Oxford.CrossRefGoogle Scholar
55. LeBaron, H. M. and McFarland, J. 1990. Herbicide resistance in weeds and crops: An overview and prognosis. p. 336352 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrichemicals: From Fundamental Research to Practical Strategies. Am. Chem. Soc. Symp. Ser. 421 Washington, DC.CrossRefGoogle Scholar
56. Levy, Y., Levi, R., and Cohen, Y. 1983. Buildup of a pathogen subpopulation resistant to a systemic fungicide under various control strategies: A flexible simulation model. Phytopathology 73:14751480.CrossRefGoogle Scholar
57. Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.CrossRefGoogle Scholar
58. Mallory-Smith, C. A., Thill, D. C., Alcocer-Ruthling, M., and Thompson, C. 1992. Growth comparisons of sulfonylurea resistant and susceptible biotypes. Proc. Weed Control Con. Volume 2, Melbourne, Australia, Weed Sci. Soc. of Victoria.Google Scholar
59. Maxwell, B. D., Roush, M. L., and Radosevich, S. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.CrossRefGoogle Scholar
60. Mazur, B. J. and Falco, S. C. 1989. The development of herbicide resistant crops. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:441470.CrossRefGoogle Scholar
61. McKinley, N. D. 1990. Sulfonylurea herbicide resistance in weeds in cereals and non-crop areas in the U.S. and Canada. p. 268270 in Proc. 9th Austral. Weeds Conf., Adelaide. Google Scholar
62. Moss, S. 1992. Herbicide resistance in the weed Alopecurus myosuroides (blaekgrass); the current situation. p. 2847 in Denholm, I., Devonshire, A. L., Hollomon, D. W., eds. Achievements and Developments in Combating Pest Resistance. Elsevier, London.CrossRefGoogle Scholar
63. Newhouse, F. E., Smith, W. A., Starrett, M. A., Schaefer, T. J., and Singh, B. K. 1992. Tolerance to imidazolinone herbicides in wheat. Plant Physiol. 100:882886.CrossRefGoogle ScholarPubMed
64. Powles, S. B. and Matthews, J. M. 1992. Multiple herbicide resistance in annual ryegrass. A driving force for adoption of integrated weed management. p. 7587 in Denholm, I., Devonshire, A. L., Hollomon, D. W., eds. Achievements and Developments in Combating Pest Resistance. Elsevier, London.CrossRefGoogle Scholar
65. Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4: 169172.CrossRefGoogle Scholar
66. Ray, T. B. 1984. Site of action of chlorsulfuron: inhibition of valine and isoleucine synthesis in plants. Plant Physiol. 75:827831.CrossRefGoogle Scholar
67. Raymond, M., Marquine, M., and Pasteur, N. 1992. Role of mutation and migration in the evolution of insecticide resistance. p. 2840 in Denholm, I., Devonshire, A. L. and Hollomon, D. W., eds. Achievements and Developments in Combating Pesticide Resistance. Elsevier, London.Google Scholar
68. Romano, M. L., Stephenson, G. R., Tal, A., and Hall, J. C. 1993. The effect of monooxygenase and glutathione-S-transferase inhibitors on the metabolism of diclofop-methyl and fenoxaprop-ethyl in barley and wheat. Pestic. Biochem. Physiol. 46:181189.CrossRefGoogle Scholar
69. Roush, M. L., Radosevich, S. R., and Maxwell, B. D. 1990. Future outlook for herbicide-resistance research. Weed Technol. 4:208214.CrossRefGoogle Scholar
70. Roush, R. T. 1989. Designing resistance management programs: How can you choose? Pestic. Sci. 26:423441.Google Scholar
71. Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed Kochia scoparia . Plant. Physiol. 93:5561.CrossRefGoogle ScholarPubMed
72. Saari, L. L., Cotterman, J. C., Smith, W. F., and Primiani, M. M. 1992. Sulfonylurea resistance in common chickweed, perennial ryegrass, and russian thistle. Pestic. Biochem. Physiol. 42:110118.CrossRefGoogle Scholar
73. Saari, L. L., Cotterman, J. C., and Thill, D.C. 1994. Resistance to acetolactate synthase-inhibitor herbicides. p. 83139 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry, Lewis Press. Chelsea, MI.Google Scholar
74. Sanders, P. L., Houser, W. J., Parish, P. J., and Cole, H. Jr. 1985. Reduced-rate fungicide mixtures to delay fungicide resistance and to control selected turfgrass diseases. Plant Dis. 69:939943.Google Scholar
75. Saxena, P. R. and King, J. 1988. Herbicide resistance in Datura innoxia cross resistance of sulfonylurea resistant cell lines to imidazolinones. Plant Physiol. 86:863867.CrossRefGoogle ScholarPubMed
76. Saxena, P. R. and King, J. 1990. Lack of cross-resistance of imidazolinoneresistant cell lines of Datura innoxia P. Mill. to chlorsulfuron. Plant Physiol. 94:11111115.CrossRefGoogle ScholarPubMed
77. Schloss, J. V., Ciskanik, L. M., and Van Dyk, D. E. 1988. Origin of the herbicide binding site of acetolactate synthase. Nature 331:360362.CrossRefGoogle Scholar
78. Schmitzer, P. R., Eilers, R. J., and Cséke, C. 1993. Lack of cross-resistance of imazaquin-resistant Xanthium strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiol. 103:281283.CrossRefGoogle ScholarPubMed
79. Shaner, D. L. and Anderson, P. C. 1985. Mechanism of action of the imidazolinones and cell culture selection of tolerant maize. p. 287299 in Zaitlin, M., Day, P. R., and Hollaender, A., eds. Biotechnology in Plant Science. Academic Press, New York.CrossRefGoogle Scholar
80. Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinonespotent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.CrossRefGoogle ScholarPubMed
81. Sivakumaran, K., Mulugeta, D., Fay, P. K., and Dyer, W. E. 1993. Differential herbicide response among sulfonylurea-resistant Kochia scoparia L. accessions. Weed Sci. 41:159165.CrossRefGoogle Scholar
82. Skylakakis, G. 1981. Effects of alternating and mixing pesticides on the buildup of fungal resistance. Phytopathology 71:11191121.CrossRefGoogle Scholar
83. Subramanian, M. V., Hung, H. Y., Dias, J. M., Miner, V. M., Butler, J. H., and Jachetta, J. J. 1990. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol. 94:239244.CrossRefGoogle ScholarPubMed
84. Swanson, E. B., Herrgesell, M. J., Sippell, D. W., and Wong, R.S.C. 1989. Microspore mutagenesis and selection: canola plants with field tolerance to imidazolinones. Theor. Appl. Genet. 78:525530.CrossRefGoogle ScholarPubMed
85. Webb, S. R. and Hall, J. C. 1993. Indoleacetic acid binding characters of 2,4-D susceptible and resistant biotypes of wild mustard (Sinapis alba). Weed Sci. Soc. Am. Abstr. 33:196.Google Scholar
86. Worthing, C. R. and Hance, R. J., eds. 1991. The Pesticide Manual: A World Compendium. 9th ed. The British Crop Protection Council, Surrey, UK. 1141 p.Google Scholar
87. Wrage, K. 1993. Sales results of herbicide-resistant corn. Biotech Reporter October: 1,3.Google Scholar