Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T17:04:00.690Z Has data issue: false hasContentIssue false

Biological Control of Hemp sesbania (Sesbania exaltata) and Sicklepod (Senna obtusifolia) in Soybean with Anthracnose Pathogen Mixtures

Published online by Cambridge University Press:  20 January 2017

C. Douglas Boyette*
Affiliation:
Biological Control of Pests Research Unit
Robert E. Hoagland
Affiliation:
U.S. Department of Agriculture-Agricultural Research Service, Crop Production Systems Research Unit, Stoneville, MS 38776
*
Corresponding author's E-mail: doug.boyette@ars.usda.gov.

Abstract

In greenhouse and field experiments conducted over 3 yr, tank mixtures of spores of the fungi Colletotrichum truncatum and Colletotrichum gloeosporioides, formulated in unrefined corn oil and Silwet L-77 surfactant, were evaluated as a mycoherbicide mixture for simultaneous control of hemp sesbania and sicklepod, respectively. In greenhouse tests, 100% mortality and dry weight reduction of hemp sesbania occurred 6 d after treatment (DAT), whereas 15 d were required to achieve 100% mortality and dry weight reduction of sicklepod. In field experiments conducted in narrow-row (51-cm) soybean test plots, a single application of the fungal mixture formulated as described controlled hemp sesbania and sicklepod 94% and 88%, respectively, 28 DAT. Neither fungus, applied as aqueous conidial suspensions, provided control of their respective weed hosts. These results indicate that tank mixtures of these anthracnose-forming pathogens can effectively control hemp sesbania and sicklepod with a single application.

En experimentos de campo y de invernadero conducidos durante 3 años, las mezclas de esporas de los hongos Colletotrichum truncatum y C. gloeosporioides, formuladas en aceite de maíz no refinado y surfactante Silwet L-77, fueron evaluadas como una mezcla mico-herbicida para el control simultáneo de Sesbania exaltata y Senna obtusifolia, respectivamente. En las pruebas de invernadero, se logró el 100% de mortalidad y la reducción del peso seco de Sesbania exaltata 6 días después del tratamiento (DAT), mientras que se requirieron 15 días para alcanzar el 100% de mortalidad y la reducción del peso seco de Senna obtusifolia. En los experimentos de campo llevados al cabo en parcelas experimentales de soya sembradas en surcos estrechos (51cm), una sola aplicación de la mezcla de hongos, formulada como se describió anteriormente, controló a Sesbania exaltata y Senna obtusifolia en 94 y 88% respectivamente a los 28 DAT. Ninguno de los hongos, aplicados como suspensiones acuosas conidiales, controló su respectiva maleza hospedera. Estos resultados indican que las mezclas de estos patógenos causantes de la antracnosis pueden controlar con efectividad a Sesbania exaltata y Senna obtusifolia, con una sola aplicación.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amsellem, Z., Sharon, A., and Gressel, J. 1991. Abolition of selectivity of two mycoherbicidal organisms and enhanced virulence of avirulent fungi by an invert emulsion. Phytopathology 81:985988.CrossRefGoogle Scholar
Amsellem, Z., Sharon, A., Gressel, J., and Quimby, P. C. Jr. 1990. Complete abolition of high threshold of two mycoherbicides (Alternaria cassiae) and Alternaria crassa) when applied in invert emulsion. Phytopathology 80:925929.Google Scholar
Bakerspigel, A. 1953. Soils as a storage medium for fungi. Mycologia 45:596604.Google Scholar
Banks, P. A., Tripp, T. N., Wells, J. W., and Hammel, J. E. 1985. Effects of tillage on sicklepod (Cassia obtusifolia) interference with soybeans (Glycine max) and soil water use. Weed Sci. 34:143149.CrossRefGoogle Scholar
Boyette, C. D. 2006. Adjuvants enhance the biological control potential of an isolate of Colletotrichum gloeosporioides for biological control of sicklepod (Senna obtusifolia). Biocontrol Sci. Technol. 16:10571066.CrossRefGoogle Scholar
Boyette, C. D., Bowling, A. J., Vaughn, K. C., Hoagland, R. E., and Stetina, K. C. 2010. Induction of infection in Sesbania exaltata by Colletotrichum gloeosporioides f. sp. aeschynomene formulated in an invert emulsion. World J. Microbiol. Biotechnol. 26:951956.Google Scholar
Boyette, C. D., Hoagland, R. E., and Weaver, M. A. 2007a. Biocontrol efficacy of Colletotrichum truncatum for hemp sesbania (Sesbania exaltata) control is enhanced with unrefined corn oil and surfactants. Weed Biol. Manag. 7:7076.Google Scholar
Boyette, C. D., Hoagland, R. E., and Weaver, M. A. 2007b. Effect of row spacing on biological control of sicklepod (Senna obtusifolia) with Colletotrichum gloeosporioides . Biocontrol Sci. Technol. 17:957967.Google Scholar
Boyette, C. D. and McAlpine, J. R. 1996. Herbicidal control of sicklepod and coffee senna with Colletotrichum gloeosporioides. U.S. patent No. 5,529,773.Google Scholar
Boyette, C. D., Quimby, P. C. Jr., Bryson, C. T., Egley, G. H., and Fulgham, F. E. 1993. Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion. Weed Sci. 41:497500.Google Scholar
Boyette, C. D., Templeton, G. E., and Smith, R. J. Jr. 1979. Control of winged waterprimrose (Jussiaea decurrens) and northern jointvetch (Aeschynomene virginica) with fungal pathogens. Weed Sci. 27:497501.CrossRefGoogle Scholar
Bridges, D. C. and Walker, R. H. 1987. Economics of sicklepod (Cassia obtusifolia) management. Weed Sci. 35:594598.Google Scholar
Buchanan, G. A., Crowley, R. H., Street, J. E., and McGuire, J. A. 1980. Competition of sicklepod (Cassia obtusifolia) and redroot pigweed (Amaranthus retroflexus) with cotton (Gossypium hirstum). Weed Sci. 28:258262.CrossRefGoogle Scholar
Chandramohan, S. and Charudattan, R. 2003. A multiple-pathogen system for bioherbicidal control of several weeds. Biocontrol Sci. Technol. 13:199205.Google Scholar
Chandramohan, S., Charudattan, R., Sonoda, R. M., and Singh, M. 2002. Field evaluation of a fungal mixture for the control of seven weedy grasses. Weed Sci. 50:204213.Google Scholar
Charudattan, R. 2001. Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agroecology. BioControl 46:229260.Google Scholar
Charudattan, R. 2005. Ecological, practical, and political inputs into selection of weed targets: what makes a good biological control target? Biol. Control 35:183196.CrossRefGoogle Scholar
Cook, R. J. and Baker, K. F. 1983. The Nature and Practice of Biological Control of Plant Pathogens. St. Paul, MN: American Phytopathological Society. 368 p.Google Scholar
Crawford, L., McDonald, G. M., and Friedman, M. 1990. Composition of sicklepod (Cassia obtusifolia) toxic seeds. J. Agric. Food Chem. 38:21692175.Google Scholar
Daniel, J. T., Templeton, G. E., Smith, R. J. Jr., and Fox, W. T. 1973. Biological control of northern jointvetch in rice with an endemic fungal disease. Weed Sci. 21:303307.Google Scholar
Dowler, C. C. 1992. Weed survey—southern states. Proc. South. Weed Sci. Soc. 45:392407.Google Scholar
Hallett, S. G. 2005. Where are the bioherbicides? Weed Sci. 53:404415.CrossRefGoogle Scholar
Harry-O'kuru, R. E., Wu, Y. V., Evangelista, R., Vaughn, S. F., Rayford, W. W., and Wilson, R. F. 2005. Sicklepod (Senna obtusifolia) seed processing and potential utilization. J. Agric. Food Chem. 53:47844787.Google Scholar
Horsfall, J. G. and Barratt, R. W. 1945. An improved grading system for measuring diseases. Phytopathology 35:655.Google Scholar
Jackson, M. A. and Schisler, D. A. 1992. The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Appl. Environ. Microbiol. 58:22602265.CrossRefGoogle ScholarPubMed
McWhorter, C. G. and Anderson, J. M. 1979. Hemp sesbania (Sesbania exaltata) competition in soybeans (Glycine max). Weed Sci. 27:5864.CrossRefGoogle Scholar
Nelson, K. A. and Renner, K. A. 1999. Weed management in wide- and narrow-row glyphosate resistant soybean. J. Prod. Agric. 12:460465.Google Scholar
Norris, R. F. 2007. Weed fecundity: current status and future needs. Crop Prot. 26:182188.Google Scholar
Norsworthy, J. K. and Oliver, L. R. 2000. Hemp sesbania interference in drill-seeded glyphosate-resistant soybean. Weed Sci. 50:3441.Google Scholar
Pal, K. K. and McSpadden Gardener, B. 2006. Biological control of plant pathogens. Plant Health Instructor. DOI: .Google Scholar
Powell, R. G., Plattner, R. D., and Suffness, M. 1990. Occurrence of sesbanimide in seeds of toxic sesbania species. Weed Sci. 38:148152.CrossRefGoogle Scholar
Putnam, M. R., Boosinger, T., Spano, J., Wright, J., Wiggins, A., and D'Andrea, G. 1988. Evaluation of Cassia obtusifolia (sicklepod) seed consumption in Holstein calves. Vet. Hum. Toxicol. 30:316318.Google Scholar
Reddy, K. N. 2002. Weed control and economic comparisons in soybeans planting systems. J. Sustain. Agric. 21:2135.Google Scholar
Sandrin, T. R., TeBeest, D. O., and Weidemann, G. J. 2003. Soybean and sunflower oils increase the infectivity of Colletotrichum gloeosporioides f. sp. aeschynomene to northern jointvetch. Biol. Control 26:244252.Google Scholar
Steele, R. G. D., Torrey, J. H., and Dickeys, D. A. 1997. Multiple Comparisons. Principles and Procedures of Statistics—A Biometrical Approach. New York: McGraw Hill. 666 p.Google Scholar
Watson, A. K. 1991. The classical approach with plant pathogens. Pages 323. In TeBeest, D. O. ed. Microbial Control of Weeds. New York: Chapman and Hall.Google Scholar
Weaver, M. A., Lyn, M. E., Boyette, C. D., and Hoagland, R. E. 2007. Bioherbicides for weed control. Pages 93110. In Upadhyaya, M. K. and Blackshaw, R. E. eds. Non-Chemical Weed Management. Cambridge, MA: CABI.Google Scholar
Webster, T. M. and Coble, H. D., 1997. Changes in the weed species composition of the southern United States: 1974 to 1995. Weed Technol. 11:308317.CrossRefGoogle Scholar
Yagi, S. M., El Tigani, S., and Adam, S. E. I. 1998. Toxicity of Senna obtusifolia fresh and fermented leaves (kawal), Senna alata leaves and some products from Senna alata on rats. Phytother. Res. 12:324330.Google Scholar