Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T11:28:20.317Z Has data issue: false hasContentIssue false

Control of Sulfonylurea-Resistant Kochia (Kochia scoparia)

Published online by Cambridge University Press:  12 June 2017

Dennis J. Tonks
Affiliation:
Department of Bioagricultural Sciences and Pest Management. Colorado State University, Fort Collins, CO 80523-1174
Philip Westra
Affiliation:
Department of Bioagricultural Sciences and Pest Management. Colorado State University, Fort Collins, CO 80523-1174

Abstract

Greenhouse and field experiments were conducted to assess the effectiveness of herbicide tank mixtures for control of sulfonylurea (SU)-resistant and -susceptible kochia biotypes. Kochia control at three growth stages was evaluated for fluroxypyr, dicamba, 2,4-D, bromoxynil, and bromoxynil plus MCPA. Control decreased as kochia size increased, especially at less than full labeled herbicide rates. Treatments containing bromoxynil provided best overall control in the greenhouse but were less effective on larger kochia plants in the field. Dicamba and fluroxypyr provided similar, effective kochia control both in greenhouse and field experiments. 2,4-D did not provide acceptable kochia control regardless of formulation, rate, or application timing. All kochia biotypes responded similarly to non-SU herbicides. In the field, inclusion of an SU herbicide in the treatment generally resulted in no increased R-kochia control above that provided by the non-SU herbicide. R-kochia population dynamics can affect selection of alternative control strategies.

Type
Research
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alcocer-Ruthling, M., Thill, D. C., and Shafii, B. 1992a. Seed biology of sulfonylurea-resistant and -susceptible biotypes of prickly lettuce (Lactuca serriola). Weed Technol. 6:858864.CrossRefGoogle Scholar
Alcocer-Ruthling, M., Thill, D. C., and Shafii, B. 1992b. Differential competitiveness of sulfonylurea resistant and susceptible prickly lettuce (Lactuca serriola). Weed Technol. 6:303309.Google Scholar
Bell, A. R., Nalewaja, J. D., and Schooler, A. B. 1972. Response of kochia selections to 2,4-D, dicamba, and picloram. Weed Sci. 20:458462.Google Scholar
Boydston, R. A. and Al-Khatib, K. 1994. DC X2 5309 organosilicone adjuvant improves control of kochia (Kochia scoparia) with bentazon and bromoxynil. Weed Technol. 8:99104.CrossRefGoogle Scholar
Christoffoleti, P. J. 1993. Growth, competitive ability, and fitness of sulfonylurea resistant and susceptible Kochia scoparia. . Colorado State University, Fort Collins, CO. 189 p.Google Scholar
Christoffoleti, P. J. and Westra, P. 1992. Competition and coexistence of sulfonylurea resistant and susceptible kochia (Kochia scoparia) biotypes in unstable environments. Weed Sci. Soc. Am. Abstr. 32:17.Google Scholar
Conrad, S. G. and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes resistant or susceptible to atrazine. J. Appl. Ecol. 16:171177.CrossRefGoogle Scholar
Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonylurea-resistant Kochia scoparia L. accessions is associated with elevated seed levels of branched chain amino acids. Weed Sci. 41:1822.CrossRefGoogle Scholar
Fay, P. K., Mulugeta, D. M., and Dyer, W. E. 1992. The role of seed dispersal in the spread of sulfonylurea resistant Kochia scoparia . Weed Sci. Soc. Am. Abstr. 32:17.Google Scholar
Friesen, L. F., Morrison, I. N., Rashid, A., and Devine, M. D. 1993. Response of a chlorsulfuron-resistant biotype of Kochia scoparia to sulfonylurea and alternative herbicides. Weed Sci. 41:100106.Google Scholar
Fuerst, E. P., Arntzen, C. J., Pfister, K., and Penner, D. 1986. Herbicide cross resistance in triazine-resistant biotypes of four weed species. Weed Sci. 34:344353.CrossRefGoogle Scholar
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research. New York: J. Wiley. 680 p.Google Scholar
Gressel, J. and Segel, L. A. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198.Google Scholar
Holt, J. S. and Radosevich, S. R. 1983. Differential growth of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 31:112120.Google Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
Maxwell, B. D. 1992. Weed thresholds: the space component and considerations for herbicide resistance. Weed Technol. 6:206212.Google Scholar
Mulugeta, D., Maxwell, B. D., Fay, P. K., and Dyer, W. E. 1994. Kochia (Kochia scoparia) pollen dispersion, viability and germination. Weed Sci. 42:548552.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1993. Spray carrier salts affect herbicide toxicity to kochia (Kochia scoparia). Weed Technol. 7:154158.CrossRefGoogle Scholar
Nalewaja, J. D., Woznica, Z., and Matysiak, R. 1991. 2,4-D amine antagonism by salts. Weed Technol. 5:873880.CrossRefGoogle Scholar
Oettmeier, W., Masson, K., Fedtke, C., Konze, J., and Schmidt, R. R. 1982. Effect of different photosystem II inhibitors on chloroplasts isolated from species either susceptible or resistant to s-triazine herbicides. Pestic. Biochem. Physiol. 19:357367.CrossRefGoogle Scholar
Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to ALS inhibiting herbicides. In Powles, S. B. and Holtum, J.A.M., eds. Resistance to Herbicides in Plants. Boca Raton, FL: CRC Press. p. 83139.Google Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42:110118.CrossRefGoogle Scholar
SAS Institute. 1988. SAS/STAT™ Users Guide, Release 6.03. Cary, NC: SAS Institute. 1028 p.Google Scholar
Stallings, G. P., Thill, D. C., Mallory-Smith, C. A., and Shafii, B. 1995. Pollenmediated gene flow of sulfonylurea-resistant kochia (Kochia scoparia). Weed Sci. 43:95102.Google Scholar
Thompson, C. R., Thill, D. C., and Shafii, B. 1994a. Growth and competitiveness of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42:172179.CrossRefGoogle Scholar
Thompson, C. R., Thill, D. C., and Shafii, B. 1994b. Germination characteristics of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42:5056.CrossRefGoogle Scholar
Tonks, D. J. and Westra, P. 1994. A comparison of fluroxypyr, dicamba, and gyphosate for control of ALS resistant and susceptible kochia (Kochia scoparia (L.) Schrad.) biotypes applied at three growth stages. Weed Sci. Soc. Am. Abstr. 34:91.Google Scholar
Wicks, G. A., Martin, A. R., Haack, A. E., and Mahnken, G. W. 1994. Control of triazine-resistant kochia (Kochia scoparia) in sorghum (Sorghum bicolor). Weed Technol. 8:748753.Google Scholar
Wright, J. L., Mallory-Smith, C. A., Fay, P. K., Thill, D. C., Westra, P., and Trunkle, P. A. 1993. The frequency of sulfonylurea herbicide resistant kochia (Kochia scoparia [L.] Shrad.) in Colorado, Idaho, and Montana. Weed Sci. Soc. Am. Abstr. 46:7576.Google Scholar