Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T10:22:01.510Z Has data issue: false hasContentIssue false

Control of Volunteer Glyphosate-Resistant Canola in Glyphosate-Resistant Sugar Beet

Published online by Cambridge University Press:  20 January 2017

Vipan Kumar
Affiliation:
Montana State University–Bozeman, Southern Agricultural Research Center, Huntley, MT 59037
Prashant Jha*
Affiliation:
Montana State University–Bozeman, Southern Agricultural Research Center, Huntley, MT 59037
*
Corresponding author's Email: pjha@montana.edu.

Abstract

Occurrence of glyphosate-resistant (GR) canola volunteers in GR sugar beet is a management concern for growers in the Northern Great Plains. Field experiments were conducted at the Southern Agricultural Research Center near Huntley, MT, in 2011 and 2012 to evaluate effective herbicide programs to control volunteer GR canola in GR sugar beet. Single POST application of triflusulfuron methyl alone at the two-leaf stage of sugar beet was more effective at 35 compared with 17.5 g ai ha−1. However, rate differences were not evident when triflusulfuron methyl was applied as a sequential POST (two-leaf followed by [fb] six-leaf stage of sugar beet) program (17.5 fb 17.5 or 35 fb 35 g ha−1). Volunteer GR canola plants in the sequential POST triflusulfuron methyl–containing treatments produced little biomass (11 to 15% of nontreated plots) but a significant amount of seeds (160 to 661 seeds m−2). Ethofumesate (4,200 g ai ha−1) PRE followed by sequential POST triflusulfuron methyl (17.5 or 35 g ha−1) provided effective control (94 to 98% at 30 d after treatment [DAT]), biomass reduction (97%), and seed prevention of volunteer GR canola. There was no additional advantage of adding either desmedipham + phenmedipham + ethofumesate premix (44.7 g ha−1) or ethofumesate (140 g ha−1) to the sequential POST triflusulfuron methyl–only treatments. The sequential POST ethofumesate-only (140 fb 140 g ha−1) treatment provided poor volunteer GR canola control at 30 DAT, and the noncontrolled plants produced 6,361 seeds m−2, which was comparable to the nontreated control (7,593 seeds m−2). Sequential POST triflusulfuron methyl–containing treatments reduced GR sugar beet root and sucrose yields to 18 and 20%, respectively. Consistent with GR canola control, sugar beet root and sucrose yields were highest (95 and 91% of hand-weeded plots, respectively) when the sequential POST triflusulfuron methyl–containing treatments were preceded by ethofumesate (4,200 g ha−1) PRE. Growers should utilize these effective herbicide programs to control volunteer GR canola in GR sugar beet. Because of high canola seed production potential, as evident from this research, control efforts should be aimed at preventing seed bank replenishment of the GR canola volunteers.

La presencia de colza resistente a glyphosate (GR) voluntaria representa una preocupación para el manejo del cultivo para los productores de remolacha azucarera GR en las Grandes Planicies del Norte. Se realizaron experimentos de campo en el Centro de Investigación Agrícola del Sur cerca de Huntley, Montana, en 2011 y 2012, para evaluar la efectividad de programas de herbicidas para el control de colza GR voluntaria en campos de remolacha azucarera GR. Una sola aplicación POST de triflusulfuron methyl en el estadio de dos hojas de la remolacha fue más efectiva a 35 que a 17.5 g ai ha−1. Sin embargo, las diferencias en entre las dosis no fueron evidentes cuando triflusulfuron methyl fue aplicado con un programa secuencial POST (aplicación en el estadio de dos hojas seguido de [fb] aplicación en el estadio de seis hojas de la remolacha, a 17.5 fb 17.5, ó 35 fb 35 g ha−1). En los tratamientos POST secuenciales con triflusulfuron methyl, las plantas voluntarias de colza GR produjeron poca biomasa (11 a 15% en comparación con las parcelas sin tratamiento), pero sí una cantidad significativa de semilla (160 a 661 semillas m−2). Ethofumesate (4,200 g ai ha−1) PRE seguido de triflusulfuron methyl POST secuencial (17.5 ó 35 g ha−1) brindó un control efectivo (94 a 98% a 30 d después del tratamiento [DAT]), reducción de biomasa (97%), y prevención de producción de semilla de colza GR voluntaria. No hubo ventaja adicional de agregar, ya sea una pre-mezcla (44.7 g ha−1) de desmedipham + phenmedipham + ethofumesate o ethofumesate (140 g ha−1) a los tratamientos secuenciales POST con triflusulfuron methyl. El tratamiento secuencial POST con sólo ethofumesate (140 fb 140 g ha−1). brindó poco control de colza GR voluntaria a 30 DAT, y las plantas que no fueron controladas produjeron 6,361 semillas m−2, lo cual fue comparable al testigo sin tratamiento (7,593 semillas m−2). La aplicación secuencial POST de tratamientos que tenían triflusulfuron methyl redujeron los rendimientos de raíz y sucrose de la remolacha GR 18 y 20%, respectivamente. Consistentemente con el control de colza GR, los rendimientos de raíz y sucrose de la remolacha fueron más altos (95 y 91% comparados con las parcelas con deshierba manual, respectivamente) cuando se realizaron aplicaciones PRE de ethofumesate (4,200 g ai ha−1) seguidas de aplicaciones secuenciales POST con tratamientos que contenían triflusulfuron methyl. Los productores deberían utilizar estos efectivos programas de herbicidas para controlar la colza GR voluntaria en campos de remolacha azucarera GR. Debido al alto potencial de producción de semilla de la colza, como se evidenció en esta investigación, se deberían realizar esfuerzos de control orientados a prevenir el incremento del banco de semillas de la colza GR voluntaria.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Afanasiev, MM (1964) The effect of simulated hail injuries on yield and sugar content of beets. J Am Soc Sugar Beet Technol 13:225237 Google Scholar
Ali, MB (2004) Characteristics and Production Costs of U.S. Sugarbeet Farms. Washington, DC: United States Department of Agriculture Economics Research Service Statistical Bulletin 974-8. http://www.ers.usda.gov/media/943070/sb974-8.pdf. Accessed June 7, 2014Google Scholar
Beckie, HJ, Harker, KN, Hall, LM (2006) A decade of herbicide-resistant crops in Canada. Can J Plant Sci 86:12431264 Google Scholar
Beckie, HJ, Owen, MDK (2007) Herbicide-resistant crops as weeds in North America. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 2 (44):122 Google Scholar
Beckie, HJ, Swartz, GS, Nair, HK, Warwick, SI, Johnson, E (2004) Multiple herbicide–resistant canola can be controlled by alternative herbicides. Weed Sci 52:152157 Google Scholar
Cavalieri, A, Lewis, DW, Gulden, RH (2014) Pod drop and pod shatter are not closely related in canola. Crop Sci 54:11841188 Google Scholar
Deen, W, Hamill, A, Shropshire, C, Soltani, N, Sikemma, PH (2006) Control of volunteer glyphosate-resistant corn (Zea mays) in glyphosate-resistant soybean (Glycine max). Weed Technol 20:261266 Google Scholar
Devine, MD, Buth, JL (2001) Advantages of genetically modified canola. A Canadian perspective. Br Crop Prot Conf Weeds 1, 2:367372 Google Scholar
Gulden, RH, Shirtliffe, SJ, Thomas, AG (2003) Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Sci 51:8386 Google Scholar
Gulden, RH, Thomas, AG, Shirtliffe, SJ (2004) Secondary dormancy, temperature, and seed burial depth regulate seed bank dynamics in B. napus . Weed Sci 52:382388 Google Scholar
Hall, LM, Topinka, K, Huffman, J, Davis, L, Good, A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteer. Weed Sci 48:688694 Google Scholar
Harker, KN, Clayton, GW, Blackshaw, RE, O'Donovan, JT, Johnson, EN, Gan, Y, Holm, FA, Sapsford, KL, Irvine, RB, Van Acker, RC (2006) Persistence of glyphosate-resistant canola in western Canadian cropping systems. Agron J 98:107–11Google Scholar
Jacobson, J, Jackson, G, Jones, C (2005) Fertilizer Guidelines for Montana Crops. Bozeman, MT: Montana State University Extension Service Publication EB 161. 25 pGoogle Scholar
Jenks, BM, Willoughby, GP, Markle, DM (2006) Volunteer canola control in corn, soybean, sunflower, dry pea, and flax. Abstract 24-4. in Proceedings of the ASA-CSSA-SSSA International Annual Meetings. US Canola Association. Indianapolis, IN: American Society of Agronomy/Crop Science Society of Agronomy/Soil Science Society of Agronomy Google Scholar
Kemp, NJ, Taylor, EC, Renner, KA (2009) Weed management in glyphosate- and glufosinate-resistant sugar beet. Weed Technol 23:416424 Google Scholar
Kniss, AG, Sbatella, GM, Wilson, RG (2012) Volunteer glyphosate resistant corn interference and control in glyphosate resistant sugar beet. Weed Technol 26:348355 Google Scholar
Kniss, AR (2010) Comparison of conventional and glyphosate-resistant sugar beet the year of commercial introduction in Wyoming. J Sugarbeet Res 47:127134 Google Scholar
Leeson, JY, Thomas, AG, Hall, LM, Brenzil, C, Andrews, T, Brown, KR, Van Acker, RC (2005) Prairie Weed Surveys of Cereal, Oilseed and Pulse Crops from the 1970s to the 2000s. Saskatoon, SK, Canada: Agriculture and Agri-Food Canada Weed Survey Series Publ. 05-1. 395 pGoogle Scholar
Légère, A, Simard, MJ, Johnson, E, Stevenson, EC, Beckie, H, Blackshaw, RE (2006) Control of volunteer canola with herbicides; effects of plant growth stage and cold acclimation. Weed Technol 20:485493 CrossRefGoogle Scholar
Marquardt, PT, Johnson, WG (2013) Influence of clethodim application timing on control of volunteer corn in soybean. Weed Technol 27:645648 Google Scholar
O'Donovan, JT, Harker, KN, Dew, DA (2008) Effect of density and time of removal of volunteer canola (Brassica rapa L.) on yield loss of wheat (Triticum aestivum L.). Can J Plant Sci 88:839842 Google Scholar
Ogg, AG Jr., Parker, R (2000) Control of Volunteer Crop Plants. Pullman, WA: Washington State University Extension Bull. EB1523:1–4Google Scholar
Rainbolt, CR, Thill, DC, Young, FL (2004) Control of volunteer herbicide-resistant wheat and canola. Weed Technol 18:711718 Google Scholar
Rakow, G, Woods, D (1987) Out-crossing in rape and mustard under Saskatchewan prairie conditions. Can J Plant Sci 67:147151 Google Scholar
Raybould, AF, Gray, A (1994) Will hybrids of genetically modified crops invade natural communities? Trends Ecol Evol 9:8589 Google Scholar
Simard, MJ, Légère, A, Pageau, D, Lajeunesse, J, Warwick, S (2002) The frequency and persistence of volunteer canola (Brassica napus) in Québec cropping systems. Weed Technol 16:433439 Google Scholar
[USDA-ERS] United States Department of Agriculture–Economic Research Service (2012) Canola Production. http://www.ers.usda.gov/topics/crops/soybeans-oil-crops/canola.aspx#canolaprod. Accessed June 7, 2014Google Scholar
[USDA-NASS] United States Department of Agriculture–National Agricultural Statistics Service (2013) Montana's Rank in the Nation's Agriculture. http://www.nass.usda.gov/Statistics_by_State/Montana/Publications/Annual_Statistical_Bulletin/2013/RankMTRank.pdf. Accessed May 6, 2014Google Scholar
Williams, MM, Boydston, RA (2006) Volunteer potato interference in carrot. Weed Sci 54:9499 Google Scholar
Wilson, RG, Yonts, CD, Smith, JA (2002) Influence of glyphosate and glufosinate on weed control and sugar beet (Beta vulgaris) yield in herbicide tolerant sugar beet. Weed Technol 16:6673 Google Scholar
York, AC, Beam, JB, Culpepper, AS (2005) Control of volunteer glyphosate-resistant soybean in cotton. J Cotton Sci 9:102109 Google Scholar