Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T13:21:13.927Z Has data issue: false hasContentIssue false

Critical Period of Interference between American Black Nightshade and Triploid Watermelon

Published online by Cambridge University Press:  20 January 2017

Joshua I. Adkins*
Affiliation:
Horticultural Sciences Department, University of Florida, P.O. Box 110690, Gainesville, FL 32611
William M. Stall
Affiliation:
Horticultural Sciences Department, University of Florida, P.O. Box 110690, Gainesville, FL 32611
Bielinski M. Santos
Affiliation:
Gulf Coast Research and Education Center–Balm, University of Florida, 14625 CR 672, Wimauma, FL 33598
Stephen M. Olson
Affiliation:
North Florida Research and Education Center–Quincy, University of Florida, 155 Research Road, Quincy, FL 32351
Jason A. Ferrell
Affiliation:
Agronomy Department, University of Florida, P.O. Box 110505, Gainesville, FL 32611
*
Corresponding author's E-mail: jia84@ufl.edu.

Abstract

Field trials were conducted in the spring of 2007 and 2008 to investigate the critical period of interference between American black nightshade and triploid watermelon. To determine the critical period, the maximum period of competition and minimum weed-free period were examined. American black nightshade (2 plants m−2) was established into watermelon plots at watermelon transplanting and removed at 0, 1, 2, 3, 4, and 5 wk after transplanting to determine the maximum period of competition. American black nightshade (2 plants m−2) was established into watermelon plots at 0, 1, 2, 3, 4, and 5 wk after transplanting and remained until watermelon harvest to determine the minimum weed-free period. To avoid yield loss from exceeding 10% of a crop grown weed-free, the maximum period of competition and minimum weed-free period were found to be 3.9 and 3.6 weeks after transplanting, respectively. Therefore, if American black nightshade is controlled at any time during the critical period of 3.6 to 3.9 wk after transplanting, yield loss should not exceed 10% of a crop grown weed-free.

Se llevaron al cabo estudios de campo en la primavera de 2007 y 2008 para investigar el período crítico de interferencia entre Solanum americanum Mill. SOLAM y Citrullus lanatus (Thunb). Para determinar dicho período crítico, se examinaron el período máximo de competencia y el período mínimo libre de malezas. Los estudios se realizaron con dos plantas/ m2 de la Solanum americanum Mill. SOLAM. La Solanum americanum Mill. SOLAM fue establecida en las parcelas de sandía en el momento del transplante y fue removida a las 0,1, 2, 3,4 y 5 semanas después, para determinar el período máximo de competencia. Se estableció la Solanum americanum Mill. SOLAM., en parcelas de Citrullus lanatus (Thunb) a las 0,1, 2, 3,4 y 5 semanas después del transplante y se mantuvo hasta la cosecha para determinar el período mínimo libre de malezas Para evitar que la pérdida del rendimiento sea mayor del 10% en un cultivo libre de maleza, en este estudio se determinó que el máximo período de competencia y el período mínimo libre de malezas ocurrieron a las 3.9 y 3.6 semanas después del transplante, respectivamente. Por lo tanto, si la Solanum americanum Mill. SOLAM es controlada en cualquier momento durante el período crítico de 3.6 a 3.9 semanas después del transplante, la pérdida del rendimiento no debe exceder del 10% de un cultivo libre de malezas.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bewick, T. A., Stall, W. M., Kostewicz, S. R., and Smith, K. 1991. Alternatives for control of paraquat tolerant American black nightshade (Solanum americana). Weed Technol 5:6165.CrossRefGoogle Scholar
Freeman, J. H., Olson, S. M., and Stall, W. M. 2007. Competitive effect of in-row diploid watermelon pollenizers on triploid watermelon yield. HortScience 42:15751577.Google Scholar
Gilbert, C. A. 2006. American black nightshade (Solanum americanum MILL.) interference in watermelon (Citrullus lanatus L.). . Gainesville, FL: University of Florida. 82.Google Scholar
Gilbert, C. A., Stall, W. M., Chase, C. A., and Charudattan, R. 2008. Season-long interference of American black nightshade with watermelon. Weed Technol 22:186189.Google Scholar
Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci 50:773786.CrossRefGoogle Scholar
Larson, B. C., Mossler, M. A., and Nesheim, O. N. 2004. Florida crop/pest management profile: watermelon. Gainesville, FL: University of Florida Circ. 1236. 36.Google Scholar
Martin, S. G., Van Acker, R. C., and Friesen, L. F. 2001. Critical period of weed control in spring canola. Weed Sci 49:326333.CrossRefGoogle Scholar
Monks, D. W. and Schultheis, J. R. 1998. Critical weed-free period for large crabgrass (Digitaria sanguinalis) in transplanted watermelon (Citrullus lanatus). Weed Sci 46:530532.CrossRefGoogle Scholar
[NASS] National Agricultural Statistics Service 2009. United States Department of Agriculture National Agricultural Statistics Service. http://www.nass.usda.gov. Accessed: May 12, 2009.Google Scholar
Olson, S. M., Simonne, E. H., Stall, W. M., Roberts, P. D., Webb, S. E., Taylor, T. G., and Smith, S. A. 2006. Cucurbit production in Florida. Pages 191237. in Olson, S. M. and Simonne, E. eds. Vegetable Production Handbook for Florida. Lincolnshire, IL: Vance Publishing.Google Scholar
Roberts, H. A. 1976. Weed competition in vegetable crops. Ann. Appl. Biol 83:321347.CrossRefGoogle Scholar
Roos, D. L. 1999. American black nightshade (Solanum americanum Mill.) interference in bell pepper (Capsicum annuum L.). . Gainesville, FL: University of Florida. 90.Google Scholar
SAS 2003. SAS 9.1. Cary, NC: SAS Institute Inc. Google Scholar
Systat Software Inc 2006. SigmaPlot 10.0. San Jose, CA.Google Scholar
Terry, E. R., Stall, W. M., Shilling, D. G., Bewick, T. A., and Kostewicz, S. R. 1997. Smooth amaranth interference with watermelon and muskmelon production. HortScience 32:630632.CrossRefGoogle Scholar
Weaver, S. E. and Tan, C. S. 1983. Critical period of weed interference in transplanted tomatoes (Lycopersicon esculentum): growth analysis. Weed Sci 31:476481.Google Scholar
Williams, M. M. 2006. Planting date influences critical period of weed control in sweet corn. Weed Sci 54:928933.Google Scholar