Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T03:19:43.422Z Has data issue: false hasContentIssue false

Economic Evaluation of Common Sunflower (Helianthus annuus) Competition in Field Corn

Published online by Cambridge University Press:  20 January 2017

Nyland R. Falkenberg
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, 2474 TAMU, College Station, TX 77843
Todd J. Cogdill*
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, 2474 TAMU, College Station, TX 77843
M. Edward Rister
Affiliation:
Department of Agricultural Economics, Texas A&M University, 2124 TAMU, College Station, TX 77843
James M. Chandler
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, 2474 TAMU, College Station, TX 77843
*
Corresponding author's E-mail: cogdillt@tamu.edu

Abstract

Field studies were conducted near College Station, TX, in 2006 and 2007 to evaluate the economic impact of common sunflower interference in field corn. A density of one common sunflower per 6 m of crop row caused a yield loss of 293 kg ha−1. Estimated losses at a net corn price of $0.08 kg−1 was $92 ha−1 for infestation levels of four common sunflower plants per 6 m of row. Corn yield was increased by 32 kg ha−1 by each 1,000 plant ha−1 increase in corn planting density. Corn planting densities of 49,400 and 59,300 plants ha−1 provided the greatest net returns with or without the presence of common sunflower competition. Corn yields were reduced by extended duration of sunflower competition, with losses exceeding 1,500 kg ha−1 per week and increasing in magnitude at a decreasing rate throughout the growing season. Herbicide treatments provided net returns of $600 to $1,300 ha−1 above no weed control in both 2006 and 2007. Net returns of $609 and $653 ha−1 were obtained without the use of any herbicide for sunflower control. Determining the economic impact of common sunflower interference in field corn allows producers to estimate the overall net return on the basis of duration of common sunflower interference and density, while considering varying net corn prices, crop planting density, and herbicide application costs.

En 2006 y 2007 se realizaron estudios de campo cerca de College Station, TX, para evaluar el impacto económico de la interferencia de Helianthus annuus en el cultivo del maíz. Una densidad de una planta de H. annuus por cada 6 m de surco causó una pérdida de rendimiento de 293 kg ha−1. Las pérdidas estimadas, con un precio neto de maíz de $0.08 por kg−1, fue de $92 ha−1 para los niveles de infestación de 4 plantas de H. annuus por cada 6 m de surco. El rendimiento del maíz aumentó en 32 kg ha−1 por cada incremento de 1,000 plantas ha−1 en la densidad de siembra. Las densidades de siembra del maíz de 49,400 y 59,300 plantas ha−1 proporcionaron las mayores utilidades netas con o sin la presencia de competencia de H. annuus. Los rendimientos del maíz se redujeron en el caso de una extendida duración de la competencia de H. annuus, con pérdidas superiores a 1,500 kg ha−1 por semana y con un incremento en su magnitud a una taza decreciente a lo largo del ciclo del cultivo. Los tratamientos de herbicida proporcionaron utilidades netas de $ 600 a $1,300 ha−1 por arriba de situaciones sin control de malezas en ambos años. Utilidades netas de $609 y $653 ha−1 se obtuvieron sin el uso de algún herbicida para el control de H. annuus. Determinar el impacto económico de la interferencia de H. annuus en el cultivo de maíz, permite a los productores estimar el rendimiento neto total en base a la duración de la interferencia y la densidad de H. annuus, tomando en cuenta la variación en los precios netos del maíz, la densidad de siembra y los costos de aplicación del herbicida.

Type
Education/Extension
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. L. 2000. Cultural systems to aid weed management in semiarid corn (Zea mays). Weed Technol. 14:630634.CrossRefGoogle Scholar
Cox, W. J., Hahn, R. R., and Stachowski, P. J. 2006. Time of weed removal with glyphosate affects corn growth and yield components. Agron. J. 98:349353.CrossRefGoogle Scholar
Dienes, S. R., Dille, J. A., Blinka, E. L., Regehr, D. L., and Staggenborg, S. A. 2004. Common sunflower (Helianthus annuus) and shattercane (Sorghum bicolor) interference in corn. Weed Sci. 52:976983.CrossRefGoogle Scholar
Fock, H., Klug, K., and Canvin, D. T. 1979. Effect of carbon dioxide and temperature on photosynthetic CO2 uptake and photorespiratory CO2 evolution in sunflower leaves. Planta 145:219223.CrossRefGoogle ScholarPubMed
Geier, P. W., Maddux, L. D., Moshier, L. J., and Stalman, P. W. 1996. Common sunflower (Helianthus annuus) interference in soybean (Glycine max). Weed Technol. 16:787791.Google Scholar
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Webb, J. E. 2001. Competition and fecundity of giant ragweed in corn. Weed Sci. 49:224229.CrossRefGoogle Scholar
Irons, S. M. and Burnside, O. C. 1982. Competitive and allelopathic effects of sunflower (Helianthus annuus). Weed Sci. 30:372377.CrossRefGoogle Scholar
Johnson, W. G., Bradley, P. R., Hart, S. E., Buesinger, M. L., and Massey, R. E. 2000. Efficacy and economics of weed management in glyphosate-resistant corn. Weed Technol. 14:5765.CrossRefGoogle Scholar
Liphadzi, K. B. and Dille, J. A. 2006. Annual weed competitiveness as affected by preemergence herbicide in corn. Weed Sci. 54:156165.CrossRefGoogle Scholar
Myers, M. W., Curran, W. S., Vangessel, M. J., Majek, T. A., Scott, B. A., Mortensen, D. A., Calvin, D. D., Karsten, H. D., and Roth, G. W. 2005. The effect of weed density and application timing on weed control and corn grain yield. Weed Technol. 19:102107.CrossRefGoogle Scholar
[NASS] National Agricultural Chemical Statistics Service. 2002. Agricultural Chemical Usage. Washington, DC Agricultural Statistics Board and USDA, EPA-733-R-02-001.Google Scholar
Neter, S. and Wasserman, W. 1974. Applied Linear Statistical Models. Homewood, IL Richard D. Irwin.Google Scholar
Nolte, S. A. and Young, B. G. 2002. Efficacy and economic return on investment for conventional and herbicide-resistant corn (Zea mays). Weed Technol. 16:371378.CrossRefGoogle Scholar
Potter, J. R. and Breen, P. J. 1980. Maintenance of high photosynthetic rates during the accumulation of high leaf starch levels in sunflower and soybean. Plant Physiol. 66:526531.CrossRefGoogle ScholarPubMed
Rafael, A. M. and Currie, R. S. 2002. Impact of Palmer amaranth (Amaranthus palmeri) on corn grain yield and yield and quality of forage. Weed Technol. 16:532536.Google Scholar
Steckel, L. E. and Sprague, C. L. 2004. Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci. 52:359364.CrossRefGoogle Scholar
Teasdale, J. R. 1995. Influence of narrow row/high populations on weed control and light transmission. Weed Technol. 9:113118.CrossRefGoogle Scholar
Tollenarr, M., Dibo, A. A., Aguilera, A., Weise, S. F., and Swanton, C. J. 1994. Effect of crop density on weed interference in maize. Agron. J. 86:591595.CrossRefGoogle Scholar
USDA. 1998. Missouri Farm Facts. Washington, DC U.S. Department of Agriculture Statistical Reporting Service. 62 p.Google Scholar
Werner, E. L., Curran, W. S., Harper, J. K., Roth, G. W., and Knievel, D. P. 2004. Velvetleaf (Abutilon theophrasti) interference and seed production in corn silage and grain. Weed Technol. 18:779783.CrossRefGoogle Scholar