Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T05:46:38.479Z Has data issue: false hasContentIssue false

Efficacy of Interrow Weed Control Techniques in Wide Row Narrow-Leaf Lupin

Published online by Cambridge University Press:  20 January 2017

Abul Hashem*
Affiliation:
Department of Agriculture and Food Western Australia, 75 York Road, Northam, WA 6401, Australia
R. Michael Collins
Affiliation:
The Western Australian No-Till Farming Association, 75 York Road, Northam, WA 6401
David G. Bowran
Affiliation:
Department of Agriculture and Food Western Australia, 75 York Road, Northam, WA 6401, Australia
*
Corresponding author's E-mail: abul.hashem@agric.wa.gov.au

Abstract

The sharp decline in the area of lupin grown in Australia is partly attributed to the failure to control herbicide-resistant weeds in narrow-leaf lupin crops grown with the conventional 25-cm-wide row spacing. Growing lupin with wider row spacing allows for interrow weed control by nonselective herbicides using a sprayshield or physical methods. During 2003 to 2006, two experiments conducted at five sites evaluated the efficacy of interrow weed control techniques in narrow-leaf lupin crops grown in 55- to 65-cm-wide rows within the Western Australia wheatbelt. Interrow herbicides were applied POST using sprayshields, intrarow herbicides were banded on lupin rows at seeding, and interrow weeds were mowed using a garden mower. The main weed species at each site was rigid ryegrass, blue lupin, or wild radish. Paraquat plus diquat applied on the interrow of the lupin crop with sprayshields controlled up to 100% of weeds between rows, leading to increases in lupin grain yield in most of the sites. Glyphosate alone, a mixture of glyphosate plus metribuzin, and glyphosate followed by paraquat plus diquat also controlled interrow weeds, but did not increase lupin grain yield at any site. Thus, paraquat plus diquat is a better choice for interrow weed control in wide row lupin than glyphosate. Mowing did not improve weed control, but mowing followed by paraquat plus diquat increased lupin grain yield at one site. Regression models predicted that there was a strong relationship between weed biomass and lupin grain yield.

Una marcada disminución en el área con lupino en Australia es parcialmente atribuida a la falta de control de malezas resistentes a herbicidas en el cultivo de lupino de hoja angosta (Lupinus angustifolius), con el espacio convencional entre surcos de 25 cm. El cultivo de lupino con un espacio mayor entre surcos permite un control de malezas entre los mismos con herbicidas no selectivos, utilizando una pantalla o métodos físicos. De 2003 a 2006, se realizaron dos experimentos en cinco sitios que evaluaron la eficacia de las técnicas de control de maleza entre surcos en el cultivo de lupino de hoja angosta, sembrado en surcos de 55 a 65 cm de ancho en la franja triguera del occidente de Australia. Se aplicó herbicida posemergente entre los surcos usando pantallas; en los surcos los herbicidas se aplicaron en bandas a los surcos de lupino al momento de la siembra, y las malezas entre los surcos se cortaron usando una podadora de jardín. Las especies principales de maleza en cada sitio fueron Lolium rigidum, Lupinus cosentinii o Raphanus raphanistrum. El paraquat más diquat aplicado con pantalla entre los surcos de lupino controló hasta el 100% de la maleza entre los surcos, resultando en incrementos en el rendimiento del grano en la mayoría de los sitios. El glifosato solo, una mezcla de glifosato más metribuzina y glifosato seguido de paraquat más diquat, también controlaron las malezas entre los surcos, pero no incrementaron el rendimiento del grano en ningún sitio. Por lo tanto, en el cultivo de lupino en surcos anchos, el paraquat más diquat es una mejor opción que el glifosato para el control de malezas entre los surcos. La chapia con podadora no mejoró el control de malezas, pero la chapia, seguida con la aplicación de paraquat más diquat, incrementó el rendimiento del grano en un sitio. Los modelos de regresión predijeron que hay una fuerte relación entre la biomasa de las malezas y el rendimiento del grano de lupino.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, G. W., Weeldenberg, J., and Grassia, A. 1985. Competition between Wimmera ryegrass and narrow-leaf lupins. Aust. J. Exp. Agric 25:824831.Google Scholar
ABARE (Australian Bureau of Agricultural and Resource Economics) 2010. Australian grains and oilseeds. http://www.abare.gov.au/publications_html/cr/cr_10/cr10_h_feb.xls. Accessed: October 15, 2010.Google Scholar
Blackwell, P. and Collins, M. 2002. Lupin tramline, 600 mm rows, rolling and shield spraying—a good result in dry season. Pages. 78. in. Proceedings of Crop Update: Lupin Update. Perth, Australia Department of Agriculture Western Australia.Google Scholar
Borger, C. and Hashem, A. 2007. Evaluating double knockdown technique: sequence, application interval and rigid ryegrass growth stage. Aust. J. Agric. Res 58:265271.Google Scholar
Bowran, D. and Hashem, A. 2008. The role of weed management in sustaining systems for lupin production. Pages. 1114. in. Proceedings of the 12th International Lupin Conference. Perth, Western Australia International Lupin Association.Google Scholar
Collins, M. and Roche, J. 2001. Row cropping and weed control in lupin. Pages. 2728. in. Proceedings of Crop Update: Lupin Update. Perth, Western Australia Department of Agriculture Western Australia.Google Scholar
Collins, M. and Roche, J. 2002. Weed control in lupins using a new sprayshield and other row crop techniques. Pages. 484487. in. Proceedings of the 13th Australian Weeds Conference. Perth, Western Australia Weed Society of Western Australia.Google Scholar
Crabtree, W., Forsbery, G., Roe, A., Collins, M., and Beckett, M. 2002. Lupin wide row data and observations. Pages. 910. in. Proceedings of Crop Update: Lupin Update. Perth, Australia Department of Agriculture Western Australia.Google Scholar
French, B. 2004. Effect of environment on lupin yield response to row spacing. Pages. 3133. in. Proceedings of Crop Update: Lupin Update. Perth, Australia Department of Agriculture Western Australia.Google Scholar
Hashem, A., Bowran, D., Piper, T., and Dhammu, H. 2001. Resistance in wild radish (Raphanus raphanistrum) to acetolactate synthase-inhibiting herbicides in the Western Australian wheatbelt. Weed Technol. 15:6874.Google Scholar
Hashem, A., Douglas, A., Pathan, S., Riethmuller, G., and Peltzer, S. 2008. Control of seed production of rigid ryegrass in wide row lupins in Western Australian Wheatbelt. Pages. 480482. in. Proceedings of the 16th Australian Weeds Conference. Cairns, Australia The Weed Society of Queensland.Google Scholar
Kettel, K., Tuck, B., Payne, W. A., Chen, C., Mocha, S., and Karrow, R. 2003. Narrow-leaf Lupin. Dryland Cropping Systems Bulletin: EM 883-E. Corvallis, OR Oregon State University Extension Services. p. 11.Google Scholar
Kidwell, B. and Leidner, J. 2002. Weeds get a double dose: what happens when you combine herbicides with mowing? Progressive Farmer April 5659.Google Scholar
Llewellyn, R. S. and Powles, S. B. 2001. High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the wheatbelt of Western Australia. Weed Technol. 15:242248.Google Scholar
Magalhães, P. C., Silva, J. B., Durães, F. O. M., Karam, D., and Ribeiro, L. S. 2001. Effect of reduced rates of glyphosate and paraquat simulating drift in corn crop. Planta Daninha 19:247253.Google Scholar
McNaughton, D. 2008. An update on the current level of commercial evolution of lupins in UK. Pages. 3537. in. Proceedings of the 12th International Lupin Conference. Perth, Western Australia International Lupin Society.Google Scholar
Michael, C. 2008. Profitable and sustainable lupin production: a Western Australian grower's perspective. Pages. 2023. in. Proceedings of the 12th International Lupin Conference. Perth, Western Australia International Lupin Society.Google Scholar
Mihailovic, V., Hill, G. D., Mikic, A., Cupina, B., and Vasiljevic, S. 2008. White lupin as a forage on alkaline soil. Pages. 7980. in. Proceedings of the 12th International Lupin Conference. Perth, Western Australia International Lupin Society.Google Scholar
Olszyk, D., Pfleeger, T., Lee, E. H., and Plocher, M. 2009. Pea (Pisum sativum) seed production assay for reproductive effects due to herbicides. Environ. Toxicol. Chem 28:19201929.Google Scholar
Owen, M. O., Walsh, M. W., Llewellyn, R. S., and Powles, S. B. 2007. Widespread occurrence of multiple herbicide resistance in Western Australian rigid ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res 58:711718.Google Scholar
Palta, J. A., Berger, J. D., and Ludwig, C. 2008. The growth and yield of narrow leafed lupin: myths and realities. Pages. 1418. in. Proceedings of the 12th International Lupin Conference. Perth, Western Australia International Lupin Society.Google Scholar
Payne, W. A., Chen, C., and Ball, D. A. 2004. Agronomic potential of narrow-leafed and white lupins in Inland Pacific Northwest. Agron. J. 96:15011508.Google Scholar
Preston, C. 2009. Australian Glyphosate Sustainability Working Group. http://www.glyphosateresistance.org.au. Accessed: October 15, 2010.Google Scholar
Puricelli, E., Faccini, D., Orioli, G., and Sabbatini, M. R. 2004. Anoda cristata control with glyphosate in narrow- and wide-row soybean. Weed Res. 44:150156.Google Scholar
Roider, C. A., Griffin, J. L., Harrison, S. A., and Jones, C. A. 2007. Wheat response to simulated glyphosate drift. Weed Technol. 21:10101015.Google Scholar
Von baer, E. 2008. Efficiency and quality in the production of sweet lupin. Pages. 7172. in. Proceedings of the 12th International Lupin Conference. Perth, Western Australia International Lupin Association.Google Scholar
Walsh, M. J., Owen, M. O., and Powles, S. B. 2007. Frequency and distribution of herbicide resistance in Raphanus raphanistrum populations randomly collected across the Western Australian wheatbelt. Weed Res. 47:542550.Google Scholar