Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T05:40:03.215Z Has data issue: false hasContentIssue false

Evaluation and Economics of a Rotating Cultivator in Bok Choy, Celery, Lettuce, and Radicchio

Published online by Cambridge University Press:  20 January 2017

Steven A. Fennimore*
Affiliation:
University of California, Davis, Department of Plant Sciences, 1636 East Alisal, Salinas, CA 93905
Richard F. Smith
Affiliation:
University of California Cooperative Extension, Monterey County, 1432 Abbott St., Salinas, CA 93901
Laura Tourte
Affiliation:
University of California Cooperative Extension, Santa Cruz County, 1432 Freedom Blvd., Watsonville, CA 95076
Michelle LeStrange
Affiliation:
University of California Cooperative Extension, Tulare County, 4437-B S. Laspina St.Tulare, CA 93274
John S. Rachuy
Affiliation:
University of California, Davis, Department of Plant Sciences, 1636 East Alisal, Salinas, CA 93905
*
Corresponding author's E-mail: safennimore@ucdavis.edu.

Abstract

A commercial intrarow rotating cultivator was tested for weed removal and impact on hand-weeding times in bok choy, celery, lettuce, and radicchio. The rotating cultivator was tested as an automated crop thinner and weeder in direct-seeded bok choy and lettuce as an alternative to hand-thinning and -weeding. The rotating cultivator utilized machine-vision guidance to align a rotating disk with the crop plant to be saved and to remove weeds and undesired crop plants. The rotating cultivator was compared to a standard interrow cultivator, which could not remove weeds from the plant line. Main plots were cultivator type, rotating, or standard, and subplots were herbicides: pronamide for lettuce or prometryn for celery. Weed densities, hand-weeding times, crop stand, and yields were monitored. Economic analysis was performed on a subset of the data. The intrarow rotating cultivator was generally more effective than the standard interrow cultivator for reducing weed densities and hand-weeding times. However, the rotating cultivator reduced seeded lettuce stands by 22 to 28% when compared to hand-thinning and standard cultivation, resulting in lower yields and net returns. In transplanted celery, lettuce, and radicchio, the rotating cultivator removed more weeds than the standard cultivator, and reduced stands by just 6 to 9% when compared to the standard cultivator. In transplanted lettuce, the rotating cultivator was more precise and did less damage to the crop. Because transplanted crops were larger than the weeds, they were more easily differentiated using this technology. Net returns were therefore similar between the two cultivators. What is needed for celery and leafy vegetables is an effective intrarow weed removal system that reduces or eliminates the need for hand-weeding yet does not reduce yields. The rotating cultivator was developed for transplanted crops, where it performs adequately, but it cannot be recommended in the seeded crops evaluated.

Se evaluó el uso de un cultivador comercial rotativo intra-línea para la eliminación de malezas y su impacto en la deshierba manual en bok choy, apio, lechuga y radicchio. El cultivador rotativo fue evaluado para ralear el cultivo y para deshierbar automáticamente en bok choy y lechuga de siembra directa como alternativa al raleo y a la deshierba manual. El cultivador rotativo fue guiado con una máquina de visión para alinear un disco rotativo con la planta del cultivo que debía ser salvada y para remover las malezas y las plantas del cultivo no deseadas. El cultivador rotativo fue comparado con un cultivador inter-línea estándar, el cual no podía remover malezas de la línea de siembra. Las parcelas principales fueron el tipo de cultivador, rotativo o estándar, y las sub-parcelas fueron herbicidas: pronamide para la lechuga o prometryn para el apio. Se determinó las densidades de malezas, los tiempos de deshierba manual, y los rendimientos. Se realizó un análisis económico en un subgrupo de los datos. El cultivador rotativo intra-línea fue generalmente más efectivo que el cultivador inter-línea estándar para reducir las densidades de malezas y los tiempos de deshierba manual. Sin embargo, el cultivador rotativo redujo el número de plantas de lechuga establecidas en siembra directa en 22 a 28% en comparación con el raleo manual y el cultivador estándar, lo que resultó en menores rendimientos e ingresos netos. En apio, lechuga y radicchio de trasplante, el cultivador rotativo removió más malezas que el cultivador estándar, y redujo el número de plantas establecidas en solamente 6 a 9% cuando se comparó con el cultivador estándar. En la lechuga de trasplante el cultivador rotativo fue más preciso y causó menos daño al cultivo. Los cultivos trasplantados fueron más fácilmente diferenciados usando esta tecnología porque fueron más grandes que las malezas. Los ingresos netos fueron de esta forma, similares entre los cultivadores. Lo que se necesita para el apio, y los vegetales de hoja es un sistema efectivo para la remoción de malezas intra-línea que reduzca o elimine la necesidad de deshierba manual sin reducir los rendimientos. El cultivador rotativo fue desarrollado para cultivos de trasplante, en los cuales se desempeña adecuadamente, pero este no puede ser recomendado para cultivos de siembra directa.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agrian (2012) Kerb SC Specimen Label. http://www.agrian.com/labelcenter/results.cfm Accessed June 20, 2013Google Scholar
Anonymous (2013) The Compositae Genome Project. http://compgenomics.ucdavis.edu/compositae_data.php?name=Cichorium+intybus. Accessed June 20, 2013Google Scholar
[ASABE] American Society of Agricultural and Biological Engineers. 2011. American Society of Agricultural Engineers Standards. ASAE D497. 7 MAR 2011. Agricultural Machinery Management Data. St. Joseph, MI, USA. 9 pp.Google Scholar
Bell, CE (1995) Broccoli (Brassica oleracea var. botrytis) yield loss from Italian ryegrass (Lolium perenne) interference. Weed Sci 43:117120 Google Scholar
[CADPR] California Department of Pesticide Regulation (2008) Summary of Pesticide Use Report Data 2008. http://www.cdpr.ca.gov/docs/pur/pur08rep/comrpt08.pdf. Accessed June 20, 2013Google Scholar
[CADPR] California Department of Pesticide Regulation (2012) Summary of Pesticide Use Report Data 2011. http://www.cdpr.ca.gov/docs/pur/pur11rep/comrpt11.pdf. Accessed August 2, 2013Google Scholar
Cloutier, DC, van der Weide, RY, Peruzzi, A, LeBlanc, ML (2007) Mechanical weed management. Pages 111134 in Upadhyaya, MK, Blackshaw, RE, eds. Non-Chemical Weed Management. Oxfordshire, UK: CAB International,Google Scholar
Daugovish, O, Fennimore, SA, Smith, RF (2007) Herbicide evaluation for fresh market celery. Weed Technol 21:719723 Google Scholar
Daugovish, O, Smith, R, Cahn, M, Koike, S, Smith, H, Aguiar, J, Quiros, C, Cantwell, M, Takele, E (2008) Celery Production in California. http://anrcatalog.ucdavis.edu/pdf/7220.pdf. Accessed June 20, 2013Google Scholar
Fennimore, SA, Tourte, LJ, Rachuy, JS, Smith, RF, George, CA (2010) Evaluation and economics of a machine-vision guided cultivation program in broccoli and lettuce. Weed Technol 24:3338 Google Scholar
Gianessi, LP, Reigner, NP (2007) The value of herbicides in U.S. crop production. Weed Technol 21:559566 Google Scholar
Haar, MJ, Fennimore, SA (2003) Evaluation of integrated practices for common purslane management in lettuce. Weed Technol 17:229233 Google Scholar
Lanini, WT, LeStrange, M (1991) Low-input management of weeds in vegetable fields. Calif Agric 45(1):1113 Google Scholar
Lauritzen, E (2009) Monterey County, Crop Report 2009. Salinas, CA: Monterey County Agricultural Commisioner, 21 pGoogle Scholar
Lauritzen, E (2010) Monterey County, Crop Report 2010. Salinas, CA: Monterey County Agricultural Commisioner, 23 pGoogle Scholar
Martin, P (2007) Farm Labor Shortages: How Real, What Responses? ARE Update. http://www.agecon.ucdavis.edu/extension/update/articles/v10n5_3.pdf. Accessed June 20, 2013Google Scholar
Mou, B (2011) Mutations in lettuce improvement. Int J Plant Genomics. DOI: Google Scholar
[NASS] National Agricultural Statistics Service (2012) Vegetable 2011 Summary. Washington, DC: Agricultural Statistics Board, NASS USDA. 88 pGoogle Scholar
O'Dogherty, MJ, Godwin, RJ, Dedousis, AP, Brighton, LJ, Tillett, ND (2007) A mathematical model of the kinematics of a rotating disc for inter- and intra-row hoeing. Biosyst Eng 96:169179 Google Scholar
Ogbuchiekwe, EJ, McGiffen, ME Jr. (2001) Efficacy and economic value of weed control for drip and sprinkler irrigated celery. HortScience 36:12821282 Google Scholar
PMSP-Lettuce (2003) Pest Management Strategic Plan for California and Arizona Lettuce Production 2003. http://www.ipmcenters.org/pmsp/pdf/CAAZLettuce.pdf.Accessed June 20, 2013Google Scholar
PMSP-Celery (2004) A Pest Management Strategic Plan for California Celery Production. http://www.ipmcenters.org/pmsp/pdf/CAcelery.pdf. Accessed June 20, 2013Google Scholar
Shem-Tov, S, Fennimore, SA, Lanini, WT (2006) Weed management in lettuce (Lactuca sativa) with pre-plant irrigation. Weed Technol 20:10581065 Google Scholar
Siemens, MC, Herbon, R, Gayler, RR, Nolte, KD, Brooks, D (2012) Automated Machine for Thinning Lettuce—Evaluation and Development. St. Joseph, MI: ASABE American Society of Agricultural and Biological Engineers paper 12–1338169. Pages 14 p.Google Scholar
Slaughter, DC, Chen, P, Curley, RG (1999) Vision precision cultivation. Precision Agric 1:199216 Google Scholar
Smith, RF (2009) Celery Herbicide Treatment Table. http://www.ipm.ucdavis.edu/PMG/r104700311.html. Accessed June 7, 2013Google Scholar
Taylor, JE, Charlton, D, Yúnez-Naude, A (2012) The end of farm labor abundance. Appl. Econ. Perspect Policy 34:587598 Google Scholar
Tillett, ND, Hague, T, Grundy, AC, Dedousis, AP (2008) Mechanical within-row weed control for transplanted crops using computer vision. Biosyst Eng 99:171178 Google Scholar
Tourte, L, Smith, R (2010) Sample Production Costs for Wrapped Iceberg Lettuce—Sprinkler Irrigated–40-inch Beds. http://coststudies.ucdavis.edu/files/2010Lettuce_Wrap_CC.pdf. Accessed June 20, 2013Google Scholar
Tourte, L, Smith, R, Klonsky, K, DeMoura, R (2009) Sample Production Costs to Produce Organic Leaf Lettuce. http://coststudies.ucdavis.edu/files/lettuceleaforganiccc09.pdf. Accessed August 5, 2013Google Scholar
Turini, T, Cahn, M, Cantwell, M, Jackson, L, Koike, S, Natwick, E, Smith, R, Subbarao, K, Takele, E (2011) Iceberg lettuce production in California. http://anrcatalog.ucdavis.edu/pdf/7215.pdf. Accessed June 7, 2013Google Scholar
van der Schans, D, Bleeker, P, Molendijk, L, Plentinger, M, van der Weide, R, Lotz, B, Bauermeister, R, Total, R, Baumann, DT (2006) Practical Weed Control in Arable Farming and Outdoor Vegetable Cultivation without Chemicals. Lelystad, The Netherlands: Applied Plant Research, Wageningen University, PPO Publication 532 77 pGoogle Scholar