Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T11:07:00.844Z Has data issue: false hasContentIssue false

Grass–Legume Mixtures and Soil Fertility Affect Cover Crop Performance and Weed Seed Production

Published online by Cambridge University Press:  20 January 2017

Daniel C. Brainard*
Affiliation:
Department of Horticulture, Michigan State University, East Lansing, MI 48824
Robin R. Bellinder
Affiliation:
Department of Horticulture, Cornell University, Ithaca, NY 14853
Virender Kumar
Affiliation:
International Rice Research Institute-India, IRRI-India office, NASC Complex, CG block, First floor, DPS Marg, Pusa, New Delhi 110012, India
*
Corresponding author's E-mail: brainar9@msu.edu

Abstract

Summer leguminous cover crops can improve soil health and reduce the economic and environmental costs associated with N fertilizers. However, adoption is often constrained by poor weed suppression compared to nonlegume cover crops. In field experiments conducted in organic vegetable cropping systems in north-central New York, two primary hypotheses were tested: (1) mixtures of legume cover crops (cowpea and soybean) with grasses (sorghum–sudangrass and Japanese millet) reduce weed seed production and increase cover crop productivity relative to legume monocultures and (2) higher soil fertility shifts the competitive outcome in favor of weeds and nonlegume cover crops. Cover crops were grown either alone or in grass–legume combinations with or without composted chicken manure. Under hot, dry conditions in 2005, cowpea and soybean cover crops were severely suppressed by weeds in monoculture and by sorghum–sudangrass in mixtures, resulting in low legume biomass, poor nodulation, and high levels of Powell amaranth seed production (> 25,000 seeds m−2). Under more typical temperature and rainfall conditions in 2006, cowpea mixtures with Japanese millet stimulated cowpea biomass production and nodulation compared to monoculture, but soybeans were suppressed in mixtures with both grasses. Composted chicken manure shifted competition in favor of weeds at the expense of cowpea (2005), stimulated weed and grass biomass production (2006), and suppressed nodulation of soybean (2006). In a complementary on-farm trial, cowpea mixtures with sorghum–sudangrass suppressed weed biomass by 99%; however, both common purslane and hairy galinsoga produced sufficient seeds (600 seeds m−2) to replenish the existing weed seedbank. Results suggest that (1) mixtures of cowpeas with grasses can improve nodulation, lower seed costs, and reduce the risk of weed seed production; (2) soybean is not compatible with grasses in mixture; and (3) future costs of weed seed production must be considered when determining optimal cover crop choices.

Las leguminosas de verano usadas como cultivos de cobertura pueden mejorar la salud del suelo y reducir los costos económicos y ambientales asociados con fertilizantes de N. Sin embargo, su adopción es limitada debido a la poca supresión de malezas en comparación con los cultivos de cobertura que no sean leguminosas. En experimentos de campo llevados a cabo en sistemas de cultivo de vegetales orgánicos en la parte central norte de Nueva York, dos hipótesis principales fueron evaluadas: 1) las mezclas de leguminosas en cultivos de cobertura (garbanzo y soya) con gramíneas (híbrido de Sorghum bicolor × S. sudanese y Echinochloa frumentacea) reducen la producción de semillas de malezas e incrementan la productividad del cultivo de cobertura en comparación al monocultivo de leguminosas; y 2) mayor fertilidad del suelo altera el resultado de la competencia en favor de las malezas y cultivos de cobertura que no sean leguminosas. Los cultivos de cobertura se sembraron solos o en combinaciones de zacate-leguminosas con o sin compost de gallinaza. Bajo condiciones cálidas y secas en 2005, los cultivos de cobertura garbanzo y soya fueron severamente suprimidos por las malezas en el monocultivo y en mezclas con S. bicolor × S. sudanese, resultando en baja biomasa de la leguminosa, nodulación pobre y altos niveles en la producción de semilla de Amaranthus powellii (> 25 000 semillas m−2). Bajo condiciones de temperaturas y lluvias más típicas en 2006, la mezcla de garbanzo y E. frumentacea estimuló la producción de biomasa y nodulación de la leguminosa en comparación con el monocultivo, pero la soya fue suprimida en la mezcla de ambos zacates. La gallinaza modificó la competencia en favor de la maleza a expensas del garbanzo (2005), estimuló la producción de maleza y la producción de biomasa de los zacates (2006) y suprimió la nodulación de la soya (2006). En un estudio complementario “en finca”, las mezclas de garbanzo con S. bicolor × S. sudanese redujeron la biomasa de la maleza en 99%, sin embargo, Portulaca oleracea y Galinsoga ciliata produjeron suficientes semillas (600 semillas m−2) para reponer el banco de semillas de maleza existente. Los resultados sugieren que 1) mezclas de garbanzo con zacates pueden mejorar la nodulación, reducir los costos de la semilla y disminuir el riesgo en la producción de semillas de malezas; 2) la soya no es compatible con zacates en mezclas de cobertura; y 3) los costos futuros debido a la producción de semilla de maleza, deben ser considerados para determinar las opciones óptimas de cultivos de cobertura.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andow, D. A., Nicholson, A. G., Wien, H. C., and Willson, H. R. 1986. Insect populations on cabbage grown with living mulches. Environ. Entomol. 15:293299.CrossRefGoogle Scholar
Blackshaw, R. E., Brandt, R. N., Janzen, H. H., Entz, T., Grant, C. A., and Derksen, D. A. 2003. Differential response of weed species to added nitrogen. Weed Sci. 51:532539.Google Scholar
Brainard, D. C. and Bellinder, R. R. 2006. Estimating Weed Seed Banks for Improved Monitoring and Management of Weeds. http://www.nysipm.cornell.edu/grantspgm/projects/proj06/veg/brainard.pdf. Accessed: April 2, 2011.Google Scholar
Brainard, D. C., Bellinder, R. R., and DiTommaso, A. 2005. Effects of canopy shade on the morphology, phenology and seed characteristics of Powell amaranth (Amaranthus powellii). Weed Sci. 53:175186.Google Scholar
Brainard, D. C., DiTommaso, A., and Mohler, C. L. 2006. Intraspecific variation in germination response to ammonium nitrate of Amaranthus powellii originating on organic versus conventional vegetable farms. Weed Sci. 55:218226.Google Scholar
Carmona, D. and Landis, D. 1999. Influence of refuge habitats and cover crops on seasonal activity-density of ground beetles (Coleoptera: Carabidae) in field crops. Environ. Entomol. 28:11451153.Google Scholar
Clark, K. M. and Myers, R. L. 1994. Intercrop performance of pearl millet, amaranth, cowpea, soybean, and guar in response to planting pattern and nitrogen fertilization. Agron. J. 86:10971102.Google Scholar
Creamer, N. G. and Baldwin, K. R. 2000. An evaluation of summer cover crops for use in vegetable production systems in North Carolina. HortScience 35:600603.CrossRefGoogle Scholar
Cousens, R. and Mortimer, M. 1995. Dynamics of Weed Populations. Cambridge, UK Cambridge University Press. 332 p.Google Scholar
Ericson, F. I. and Whitney, A. S. 1984. Effects of solar radiation regimes on growth and N2 fixation of soybean, cowpea and bushbean. Agron. J. 76:529535.Google Scholar
Fitzgerald, C. B. and Bryan, R. B. 2002. New cover crops and cover crop management for organic vegetable producers in Maryland. Santa Cruz, CA Organic Farming Research Foundation final project report. 11 p. http://ofrf.org/funded/reports/fitzgerald_01f11.pdf (accessed 4/2/11)Google Scholar
Flach, K. W. 1990. Low-input agriculture and soil conservation. J. Soil Water Conserv. 45:4244.Google Scholar
Fukai, S. and Trenbath, B. R. 1993. Processes determining intercrop productivity and yields of component crops. Field Crops Res. 34:247271.Google Scholar
Giller, K. E. and Cadisch, G. 1995. Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174:255277.Google Scholar
Hill, E. C., Ngouagio, M., and Nair, M. G. 2006. Differential response of weeds and vegetable crops to aqueous extracts of hairy vetch and cowpea. HortScience 41:695700.Google Scholar
Itulya, F. M., Mwaja, V. N., and Masiunas, J. B. 1997. Collard–cowpea intercrop response to nitrogen fertilization, redroot pigweed density, and collard harvest frequency. HortScience 32:850853.Google Scholar
Karlen, D. L., Erbach, D. C., Kaspar, T. C., Colvin, T. S., and Berry, E. C. 1990. Soil tilth: a review of past perceptions and future needs. Soil Sci. Am. J. 54:153161.Google Scholar
Lawn, R. J. and Brun, W. A. 1974. Symbiotic nitrogen fixation in soybeans. I. Effect of photosynthetic source–sink manipulations. Crop Sci. 14:1116.CrossRefGoogle Scholar
Liebman, M. and Dyck, E. 1993. Crop rotation and intercropping strategies for weed management. Ecol. App. 3:92122.CrossRefGoogle ScholarPubMed
MacRae, R. J. and McDole, R. E. 1987. The effect of green manuring on the physical properties of temperate area soils. Adv. Soil Sci. 3:7194.Google Scholar
Madge, D. and Jaeger, C. 2003. Organic farming: green manures for vegetable cropping. Victoria, Australia Department of Primary Industries Agricultural Note AG1084. 7 p.Google Scholar
Pieters, A. 1927. Green Manuring: Principles and Practice. New York J. Wiley. 267 p.Google Scholar
Reader, R. J. 1991. Control of seedling emergence by ground cover: a potential mechanism involving seed predation. Can. J. Bot. 69:20842087.Google Scholar
Robbins, W. 1942. Weed Control: A Textbook and Manual. New York McGraw Hill. 543 p.Google Scholar
Schimpf, D. J. and Palmblad, I. G. 1980. Germination responses of weed seeds to soil nitrate and ammonium with and without simulated overwintering. Weed Sci. 28:190193.Google Scholar
Sustainable Agriculture Network. 1998. Managing Cover Crops Profitably. Handbook Series Book 3. Burlington, VT Sustainable Agriculture Publications.Google Scholar
Staniforth, D. W. 1962. Responses of soybean varieties to weed competition. Agron. J. 54:1113.Google Scholar
Waterer, J. G., Vessey, J. K., and Stobbe, E. H. 1994. Yield and symbiotic nitrogen fixation in a pea–mustard intercrop as influenced by N fertilizer addition. Soil Biol. Biochem. 26:447453.Google Scholar