Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T07:06:53.085Z Has data issue: false hasContentIssue false

A Historical Perspective of Pathogen Biological Control of Aquatic Plants

Published online by Cambridge University Press:  20 January 2017

Judy F. Shearer*
Affiliation:
U.S. Army Engineer Research and Development Center, Waterways Experiment Station, Vicksburg, MS 39180
*
Corresponding author's E-mail: Judy.F.Shearer@usace.army.mil.

Abstract

Pathogens were not seriously considered as biological control agents for aquatic plants in the United States until the Chesapeake Bay Eurasian watermilfoil decline occurred in the 1960s. The decline and suggestion that it was induced by pathogens spawned interest in the use of pathogens as biological control agents for nuisance aquatic species. In the years that followed, emphasis was placed on finding pathogen agents for some of the most problematic aquatic weeds, including waterhyacinth, Eurasian watermilfoil, and hydrilla. The scientist that has contributed the most to our knowledge of pathogen biological control in aquatic plants has been Dr. Raghavan Charudattan (University of Florida, Gainesville, FL). For the past 40 yr, he has authored or coauthored more than 50 manuscripts devoted to the subject in peer-reviewed journals, books, and proceedings.

Los patógenos no fueron seriamente considerados como agentes de control biológico para plantas acuáticas en los Estados Unidos hasta que empezó a deteriorarse la Myriophyllum spicatum L. en la Bahía de Chesapeake en los sesentas. Este deterioro y la idea de que fue inducido por patógenos despertaron el interés en el uso de patógenos como agentes de control biológico para especies acuáticas difíciles de controlar. En los años posteriores, se puso especial énfasis en la búsqueda de agentes patógenos para algunas de las malezas acuáticas más problemáticas incluyendo la Eichhornia crassipes, la Myriophyllum spicatum L y la Hydrilla verticillata. El científico que más ha contribuido a ampliar nuestros conocimientos en el uso de patógenos como agentes de control biológico en plantas acuáticas ha sido el Dr. Raghavan Charadattan de la Universidad de Florida en Gainesville. Durante los últimos 40 años, él ha sido autor o co-autor de más de 50 ensayos dedicados a este tema, publicados en revistas científicas, libros, minutas y otros medios de comunicación.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agricultural Research Service 1960. Index of Plant Diseases in the United States. Washington, DC: U.S. Department of Agriculture Handbook 165. 531.Google Scholar
Andrews, J. H. 1980. Plant Pathogens as Agents for Biological and Integrated Control of Aquatic Plants. Madison, WI: Water Resources Center, University of Wisconsin Technical Report WIS WRC 80-01. 36.Google Scholar
Andrews, J. H. and Hecht, E. P. 1981. Evidence for pathogenicity of Fusarium sporotrichioides to Eurasian water milfoil, Myriophyllum spicatum . Can. J. Bot 59:10691077.Google Scholar
Andrews, J. H., Hecht, E. P., and Bashirian, S. 1981. Association between the fungus Acremonium curvulum and Eurasian water milfoil, Myriophyllum spicatum . Can. J. Bot 60:12161221.Google Scholar
Bayley, S., Rabin, H., and Southwick, C. H. 1968. Recent decline in the distribution and abundance of Eurasian milfoil in Chesapeake Bay. Chesapeake Sci 9:173181.Google Scholar
Barreto, R. W. and Evans, H. C. 1996. Fungal pathogens of some Brazilian aquatic weeds and their potential use in biocontrol. Pages 121126. In Moran, V. C. and Hoffman, J. H. Proceedings of the IX International Symposium on Biological Control of Weeds, Stellenbosch, South Africa. Oxford, UK: CABI International.Google Scholar
Charudattan, R. 1973. Pathogenicity of fungi and bacteria from India to hydrilla and waterhyacinth. Hyacinth Control J 11:4448.Google Scholar
Charudattan, R. 1986. Integrated control of waterhyacinth (Eichhornia crassipes) with a pathogen, insects, and herbicides. Weed Sci 34:2630.Google Scholar
Charudattan, R. 2001. Biological control of water hyacinth by using pathogens: opportunities, challenges, and recent developments. Pages 2128. In Julien, M. H., Hill, M. P., Center, T. D., and Jianqing, D. Proceedings of the Second Meeting of the Global Working Group for the Biological and Integrated Control of Water Hyacinth, Eichhornia crassipes, Beijing, China, Oct 9–12, 2000. Canberra, Australia: Australian Centre for International Agricultural Research Proceedings 102.Google Scholar
Charudattan, R. and McKinney, D. E. 1977. A Fusarium disease of the submerged aquatic weed, Hydrilla verticillata . Proc. Am. Phytopathol. Soc 4:222. [Abstract S-5].Google Scholar
Charudattan, R. and McKinney, D. E. 1978. A Dutch isolate of Fusarium roseum ‘Culmorum’ may control Hydrilla verticillata in Florida. Pages 219224. in. Proceedings of the 5th International Symposium on Aquatic Weeds, Amsterdam, The Netherlands. Doorwerth, The Netherlands: European Weed Research Society.Google Scholar
Charudattan, R., Linda, S. B., Kluepfel, M., and Osman, Y. A. 1985. Biocontrol efficacy of Cercospora rodmanii on waterhyacinth. Phytopathology 75:12631269.Google Scholar
Charudattan, R., De Valerio, J. T., and Prange, V. J. 1993. Microbial control of aquatic weeds. Pages 7177. in Proceedings 8th International Symposium on Aquatic Weeds: Quantitative Approaches in Weed and Herbicide Research and their Practical Application, Braunschweig, Germany. Doorwerth, The Netherlands: European Weed Research Society.Google Scholar
Conway, K. E. 1976. Evaluation of Cercospora rodmanii as a biological control of waterhyacinths. Phytopathology 66:914917.Google Scholar
Conway, K. E., Freeman, T. E., and Charudattan, R., inventors. Abbott Laboratories, assignee. 1978 Jun 27. Method and composition for controlling waterhyacinth. U.S. patent 4,097,261.Google Scholar
Cuda, J. P., Charudattan, R., Grodowitz, M. J., Newman, R. M., Shearer, J. F., Tamayo, M. L., and Villegas, B. 2008. Recent advances in biological control of submersed aquatic weeds. J. Aquat. Plant Manag 46:1532.Google Scholar
Evans, H. C. and Reeder, R. H. 2001. Fungi associated with Eichhornia crassipes (water hyacinth) in the upper Amazon basin and prospects for their use in biological control. Pages 6270. In Julien, M. H., Hill, M. P., Center, T. D., and Jianqing, D. Proceedings of the Second Meeting of the Global Working Group for the Biological and Integrated Control of Water Hyacinth, Eichhornia crassipes, Beijing, China, Oct 9–12, 2000. Canberra, Australia: Australian Centre for International Agricultural Research Proceedings 102.Google Scholar
Farr, D. F., Bills, G. F., Chamuris, G. P., and Rossman, A. Y. 1980. Fungi on plants and plant products in the United States. St. Paul, MN: APS. 1252.Google Scholar
Gunner, H. B. 1983. Microbial control of Eurasian watermilfoil. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station Misc. Paper A-83-4.Google Scholar
Gunner, H. B., Limpa-Amara, Y., and Weilerstein, P. J. 1988. Field evaluation of microbiological control agents on Eurasian watermilfoil. Vicksburg, MS: U.S. Army Engineers Waterways Experiment Station Tech. Rep. A-88-1.Google Scholar
Gunner, H. B., Limpa-Amara, Y., Bouchard, B. S., Weilerstein, P. J., and Taylor, M. E. 1990. Microbiological Control of Eurasian watermilfoil. Vicksburg, MS: U.S. Army Engineers Waterways Experiment Station Tech. Rep. A-90-2.Google Scholar
Harley, J. L. and Evans, H. C. 1997. Assessment of fungal pathogens as biocontrol agents of Myriophyllum spicatum. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station Misc. Paper A-97-1.Google Scholar
Hayslip, J. F. and Zettler, F. W. 1973. Past and current research on diseases of Eurasian watermilfoil (Myriophyllum spicatum L.). Hyacinth Control J 11:3840.Google Scholar
Joye, G. F. 1990. Biocontrol of Hydrilla verticillata with the endemic fungus Macrophomina phaseolina . Plant Dis 74:10351036.Google Scholar
Joye, G. F. and Cofrancesco, A. F. Jr. 1991. Studies on the use of fungal plant pathogens for control of Hydrilla verticillata (L.f.) Royle. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station Tech. Rep. A-91-4.Google Scholar
Martinez-Jimenez, M. and Charudattan, R. 1998. Survey and evaluation of Mexican native fungi for biocontrol of waterhyacinth. J. Aquat. Plant Manag 36:145148.Google Scholar
Martinez-Jimenez, M. and Gomez-Balandra, M. A. 2007. Integrated control of Eichhornia crassipes by using insects and plant pathogens in Mexico. Crop Prot 26:12341238.Google Scholar
Moran, P. J. 2005. Leaf scarring by the weevils Neochetina eichhorniae and N. bruchi enhances infection by the fungus Cercospora piaropi on waterhyacinth, Eichhornia crassipes . Biocontrol 50:511524.Google Scholar
Morris, M. J., Wood, A. R., and den Breeyen, A. 1999. Plant pathogens and biological control of weeds in South Africa: a review of projects and progress during the last decade. Afr. Entomol 7:129137.Google Scholar
Nelson, L. S. and Shearer, J. F. 2002. Response of Eurasian watermilfoil to integrated fluridone-fungal pathogen treatment. Vicksburg, MS: U.S. Army Engineer Research and Development Center Aquatic Plant Control Research Program Tech. Notes Collect TN-APCRP-IC-03.Google Scholar
Nelson, L. S. and Shearer, J. F. 2005. 2,4-D and Mycoleptodiscus terrestris for control of Eurasian watermilfoil. J. Aquat. Plant Manag 43:2934.Google Scholar
Nelson, L. S. and Shearer, J. F. 2008. Evaluation of triclopyr and Mycoleptodiscus terrestris for control of Eurasian watermilfoil (Myriophyllum spicatum). Invasive Plant Sci. Manag 1:337342.Google Scholar
Nelson, L. S. and Shearer, J. F. 2009. Integrated weed management strategies for control of hydrilla. Vicksburg, MS: U.S. Army Engineer Research and Development Center Aquatic Plant Control Research Program Tech. Notes Collect. ERDC/TN APCRP-CC-09.Google Scholar
Nelson, L. S., Shearer, J. F., and Netherland, M. D. 1998. Integrated fluridone–fungal pathogen treatment of four submersed plants. Vicksburg, MS: U.S. Army Engineer Research and Development Center Aquatic Plant Control Research Program Note IC-01.Google Scholar
Netherland, M. D. and Shearer, J. F. 1996. Integrated use of fluridone and a fungal pathogen for control of hydrilla. J. Aquat. Plant Manag 34:48.Google Scholar
Pennington, J. C. and Theriot, E. A. 1983. Compatibility and infectivity of a Cercospora rodmanii formulation with enhancing agents. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station Misc. Paper A-83-6.Google Scholar
Rintz, R. E. 1973. A zonal leaf spot of waterhyacinth caused by Cephalosporium zonatum . Hyacinth Control J 11:4144.Google Scholar
Sanders, D. R. Sr and Theriot, E. A. 1986. Large-scale operations management test (LSOMT) of insects and pathogens for control of waterhyacinth in Louisiana, Volume II: results for 1982–1983. Vicksburg, MS: U.S. Army Engineer Research and Development Center Aquatic Plant Control Research Program Tech. Rep. A-85-1.Google Scholar
Shabana, Y. M. 2005. The use of oil emulsions for improving the efficacy of Alternaria eichhorniae as a bioherbicide for waterhyacinth (Eichhornia crassipes). Biol. Control 32:7889.Google Scholar
Shabana, Y. M. and Charudattan, R. 1996. Microorganisms associated with hydrilla in ponds and lakes in North Florida. J. Aquat. Plant Manag 34:6068.Google Scholar
Shabana, Y. M., Cuda, J. P., and Charudattan, R. 2003. Evaluation of pathogens as potential biocontrol agents of hydrilla. J. Phytopathol. (Berl.) 151:607613.Google Scholar
Shabana, Y. M., Elwakil, M. A., and Charudattan, R. 2000. Effect of media, light and pH on growth and spore production by Alternaria eichhorniae, a mycoherbicide agent for waterhyacinth. J. Plant Dis. Prot 6:617626.Google Scholar
Shabana, Y. M. and Mohamed, Z. A. 2005. Integrated control of water hyacinth with a mycoherbicide and a phenylpropanoid pathway inhibitor. Biocontrol Sci. Technol 15:659669.Google Scholar
Shearer, J. F. 1995a. Effect of temperature on efficacy of the mycoherbicide Aqua-Fyte as a biocontrol for Eurasian watermilfoil. Vicksburg, MS: Joint Agency Guntersville Project Aquatic Plant Management, Tennessee Valley Authority, and U.S. Army Corps of Engineers Rep. TVA/WR-95/00.Google Scholar
Shearer, J. F. 1995b. Potential of a pathogen, Mycoleptodiscus terrestris, as a biocontrol agent for the management of Myriophyllum spicatum in Lake Guntersville Reservoir. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station Tech. Rep. A-95-1.Google Scholar
Shearer, J. F. 1996. Field and laboratory studies of the fungus Mycoleptodiscus terrestris as a potential agent for management of the submersed aquatic macrophyte, Hydrilla verticillata. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station Tech. Rep. A-96-3.Google Scholar
Shearer, J. F. 1997. Classical pathogen biocontrol research in Asia 1994–1995: surveys for pathogen agents of Hydrilla verticillata (L. f.) Royle and Myriophyllum spicatum L. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station Tech. Rep. A-97-1.Google Scholar
Shearer, J. F. 1999. Controlling hydrilla and Eurasian watermilfoil with fungal pathogens from the People's Republic of China. Vicksburg, MS: U.S. Army Engineer Research and Development Center Aquatic Plant Control Research Program Tech. Notes Collect. TN BC-01.Google Scholar
Shearer, J. F. 2009. Preliminary testing of Mycoleptodiscus terrestris formulations. Vicksburg, MS: U.S. Army Engineer Research and Development Center Aquatic Plant Control Research Program Tech. Notes Collect. ERDC/TX APCRP-BC-10.Google Scholar
Shearer, J. F. and Jackson, M. A., inventors. The United States of America as represented by the Secretary of the Army, assignee. 2003 May 27. Mycoherbicidal compositions and methods of preparing and using the same. U.S. patent 6,569,807.Google Scholar
Shearer, J. F. and Jackson, M. A. 2006. Liquid culturing of microsclerotia of Mycoleptodiscus terrestris, a potential biological control agent for the management of hydrilla. Biol. Control 38:298306.Google Scholar
Shearer, J. F. and Nelson, L. S. 2002. Integrated use of endothall and a fungal pathogen for management of the submersed aquatic macrophyte Hydrilla verticillata . Weed Technol 16:224230.Google Scholar
Smith, C. S., Slade, S. J., Andrews, J. H., and Harris, R. F. 1989. Pathogenicity of the fungus, Colletotrichum gloeosporioides (Penz.) Sacc. to Eurasian watermilfoil (Myriophyllum spicatum L.). Aquat. Bot 33:112.Google Scholar
Smither-Kopperl, M. L., Charudattan, R., and Berger, R. D. 1998. Dispersal of spores of Fusarium culmorum in aquatic systems. Phytopathology 88:382388.Google Scholar
Smither-Kopperl, M. L., Charudattan, R., and Berger, R. D. 1999. Deposition and adhesion of spores of Fusarium culmorum on hydrilla. Can. J. Plant Pathol 21:291297.Google Scholar
Smither-Kopperl, M. L., Charudattan, R., and Berger, R. D. 1999. Plectosporium tabacinum, a pathogen of the invasive aquatic weed Hydrilla verticillata in Florida. Plant Dis 83:2428.Google Scholar
Zattau, W. C. 1988. A survey of the continental United States for pathogens of Eurasian watermilfoil. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station Tech. Rep. A-88-3.Google Scholar
Zettler, F. W. and Freeman, T. E. 1972. Plant pathogens as biocontrols of aquatic weeds. Annu. Rev. Phytopathol 10:455470.Google Scholar