Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T23:20:32.440Z Has data issue: false hasContentIssue false

Sodium Chloride Efficacy for Smooth Crabgrass (Digitaria ischaemum) Control and Safety to Common Bermudagrass and Seashore Paspalum

Published online by Cambridge University Press:  20 January 2017

Patrick E. McCullough*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223-1797
Paul L. Raymer
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223-1797
*
Corresponding author's E-mail: pmccull@uga.edu

Abstract

Seashore paspalum has high salinity tolerance, suggesting sodium chloride might have potential as a selective grassy weed herbicide. The objective of this research was to investigate sodium chloride rate and application timing for smooth crabgrass control and seashore paspalum and common bermudagrass injury. Five rates of sodium chloride (244, 488, 976, 1,952, or 3,904 kg ha−1) were compared with quinclorac at 0.84 kg ai ha−1 for controlling multileaf or multitiller smooth crabgrass. Sodium chloride at ≥ 976 kg ha−1 provided excellent control (90 to 100%) of multitiller smooth crabgrass from 7 to 28 d after treatment, but ≥ 1,952 kg ha−1 was required to achieve excellent control of multileaf populations. Furthermore, 976 kg ha−1 of sodium chloride applied to multitiller smooth crabgrass caused minimal seashore paspalum injury (0 to 6%), comparable to quinclorac, but was more injurious when applied earlier in the spring for multileaf smooth crabgrass control. Common bermudagrass injury increased with sodium chloride rate and was > 20% from sodium chloride at 488 and 976 kg ha−1 at both application timings. Overall, sodium chloride was most effective and safe on seashore paspalum when applied for smooth crabgrass control at the multitiller growth stage, whereas bermudagrass injury might be excessive at minimum rates required for control.

El Paspalum vaginatum tiene una alta tolerancia a la salinidad lo que sugiere que el cloruro de sodio puede tener potencial como herbicida selectivo de gramíneas. El objetivo de este estudio, fue investigar la dosis y el tiempo de aplicación de cloruro de sodio para el control de Digitaria ischaemum y el daño a P. vaginatum y Cynodon dactylon. Cinco dosis de cloruro de sodio (244, 488, 976, 1952, ó 3904 kg ha−1) fueron comparadas con quinclorac a 0.84 kg ia ha−1 para controlar D. ischaemum con múltiples hojas o vástagos. El cloruro de sodio a ≥ 976 kg ha−1 proporcionó excelente control (90 a 100%) de D. ischaemum de vástagos múltiples de 7 a 28 días después del tratamiento (DAT), pero ≥ 1952 kg ha−1 fueron requeridos para obtener un control excelente en las poblaciones de hojas múltiples. Adicionalmente, 976 kg ha−1 de cloruro de sodio aplicado a D. ischaemum de vástagos múltiples causó daño mínimo a P. vaginatum (0 a 6%), lo que es comparable al quinclorac, pero fue más dañino cuando se aplicó más temprano en la primavera para el control de D. ischaemum de hojas múltiples. El daño a C. dactylon se incrementó con la dosis de cloruro de sodio y fue > 20% con el herbicida aplicado a 488 y 976 kg ha−1 en ambos momentos de aplicación. En general, el cloruro de sodio fue más efectivo y seguro en P. vaginatum cuando se aplicó para el control de D. ischaemum en la etapa de crecimiento de vástagos múltiples, mientras el daño a C. dactylon puede ser excesivo a las dosis mínimas requeridas para el control.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2008. Drive 75DF herbicide label. Research Triangle Park, NC BASF Cooperation.Google Scholar
Brosnan, J. T., Breeden, G. K., and McCullough, P. E. 2010. Efficacy of two dithiopyr formulations for smooth crabgrass control influenced by growth stage. HortScience 45:961965.Google Scholar
Brosnan, J. T., DeFrank, J. D., Woods, M. S., and Breeden, G. K. 2009a. Efficacy of sodium chloride applications for control of goosegrass (Eleusine indica) in seashore paspalum turf. Weed Technol. 23:179183.Google Scholar
Brosnan, J. T., DeFrank, J., Woods, M. S., and Breeden, G. K. 2009b. Sodium chloride salt applications provide effective control of sourgrass (Paspalum conjugatum Berg.) in paspalum (Paspalum vaginatum Swartz.) turf. Weed Technol. 23:251256.Google Scholar
Brosnan, J. T. and Deputy, J. 2009. Preliminary observations of the traffic tolerance of four seashore paspalum cultivars compared to hybrid bermudagrass. HortTechnology 14:423426.Google Scholar
Cardina, J., Herms, C. P., and Herms, D. A. 2011. Phenological indicators for emergence of large and smooth crabgrass (Digitaria sanguinalis and D. ischaemum). Weed Technol. 25:141150.Google Scholar
Chism, W. J., Birch, J. B., and Bingham, S. W. 1992. Nonlinear regression for analyzing growth stage and quinclorac interactions. Weed Technol. 6:898903.Google Scholar
Coleman, R. L. and Wilson, G. P. M. 1960. The effects of floods on pasture plants. Agricultural Gazette, New South Wales 71:337347.Google Scholar
Derr, J. F. 2002. Detection of fenoxaprop-resistant smooth crabgrass (Digitaria ischaemum) in turf. Weed Technol. 16:396400.Google Scholar
Dudeck, A. E. and Peacock, C. H. 1985. Effects of salinity on seashore turfgrasses. Agron. J. 77:4750.Google Scholar
Duncan, R. R. 1994. Seashore paspalum may be grass for the year 2000. South. Turf Manag. 5:3132.Google Scholar
Duncan, R. R. 1999. Environmental compatibility of seashore paspalum (saltwater couch) for golf courses and other recreational uses. II. Management protocols. Int. Turfgrass Res. J. 8:12301239.Google Scholar
Duncan, R. R. and Carrow, R. N. 2000. Seashore Paspalum: The Environmental Turfgrass. Chelsea, MI Ann Arbor Press. Pp. 4, 138139.Google Scholar
Jiang, Y., Duncan, R. R., and Carrow, R. N. 2004. Assessment of low light tolerance of seashore paspalum and bermudagrass. Crop Sci. 44:587594.Google Scholar
Kim, T., Neal, J. C., Ditomaso, J. M., and Rossi, F. S. 2002. A survey of weed scientists' perception on the significance of crabgrasses (Digitaria spp.) in the United States. Weed Technol. 16:239242.Google Scholar
McCarty, B., Murphy, T., Whitwell, T., and Yelverton, F. 2005. Turfgrass weeds. Pages 663703 in McCarty, L. B., ed. Best Golf Course Management Practices, 2nd ed. Upper Saddle River, NJ Prentice-Hall.Google Scholar
Sakr, W. R. 2009. Response of paspalum turfgrass grown in sandy soil to trinexapac-ethyl and irrigation water salinity. J. Hortic. Sci. and Orn. Plants 1:1526.Google Scholar
Shresta, A., Hembree, K. J., and Va, N. 2007. Growth stage influences level of resistance in glyphosate-resistant horseweed. Calif. Agric. 61:6770.Google Scholar
Skerman, P. J. and Riveros, F. 1990. Tropical Grasses. Rome Food and Agricultural Organization of the United Nations. Pp. 565568.Google Scholar
Trenholm, L. E., Carrow, R. N., and Duncan, R. R. 2000. Mechanisms of wear tolerance in seashore paspalum and bermudagrass. Crop Sci. 40:13501357.Google Scholar
Trenholm, L. E., Duncan, R. R., and Carrow, R. N. 1999. Wear tolerance, shoot performance, and spectral reflectance of seashore paspalum and bermudagrass. Crop Sci. 39:11471152.Google Scholar
White, L., Raymer, P., and McCullough, P. 2009. Salt applications for annual bluegrass control in seashore paspalum. Agronomy Abstracts. CD-ROM. Available from American Society of Agronomy, 677 South Segoe Road, Madison, WI 53711.Google Scholar
Wiecko, G. 2003. Ocean water as a substitute for postemergence herbicides in tropical turf. Weed Technol. 17:788791.Google Scholar
Zawierucha, J. E. and Penner, D. 2000. Absorption, translocation, metabolism, and spray retention of quinclorac in Digitaria sugnuinalis and Eleusine indica . Weed Sci. 48:296301.Google Scholar
Zawierucha, J. E. and Penner, D. 2001. Adjuvant efficacy with quinclorac in canola (Brassica napus) and turfgrass. Weed Technol. 15:220223.Google Scholar