Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T09:26:05.220Z Has data issue: false hasContentIssue false

Sulfonylurea Herbicides' Fate in Soil: Dissipation, Mobility, and Other Processes

Published online by Cambridge University Press:  20 January 2017

Timothy L. Grey*
Affiliation:
Crop and Soil Science Department, University of Georgia, 115 Coastal Way, Tifton, GA 31794
Patrick E. McCullough
Affiliation:
Crop and Soil Science Department, University of Georgia, 1109 Experiment Street, Griffin, GA 30223
*
Corresponding author's E-mail: tgrey@uga.edu

Abstract

Sulfonylurea herbicides used in turfgrass—including chlorsulfuron, flazasulfuron, foramsulfuron, halosulfuron, metsulfuron, rimsulfuron, sulfometuron, sulfosulfuron, and trifloxysulfuron—are all weak acids, with disassociation constants ranging from 3.3 to 5.2. Sulfonylureas are used at low rates ranging from 4 to 280 g ha−1. Although these use rates put their soil concentration in parts per billion, they still have residual activity with variable persistence. They have limited susceptibility to soil leaching with weak adsorption to soil clay minerals. Sulfonylurea herbicides used in turfgrass have variable soil organic matter adsorption, which is soil dependent. The persistence and activity of these sulfonylureas are affected by soil pH. At soil pH of 7.0 and greater, some of these sulfonylurea herbicides tend to persist for longer periods with half-lives extending into years rather than days. In normal use patterns with soil pH of 7.0 and less, dissipation occurs via chemical hydrolysis and microbial degradation with half-lives ranging from days to months. Overall, sulfonylurea herbicide adsorption is negatively correlated to increasing pH (increased persistence) and positively correlated to increased organic matter (decreased activity).

Los herbicidas sulfonylurea usados en céspedes, incluyendo chlorsulfuron, flazasulfuron, foramsulfuron, halosulfuron, metsulfuron, rimsulfuron, sulfometuron, sulfosulfuron, y trifloxysulfuron, son todos ácidos débiles, con pKas que varían de 3.3 a 5.2. Los herbicidas sulfonylurea son usados a bajas dosis variando de 4 a 280 g ha−1. Mientras estas dosis ponen su concentración en el suelo en ppb, aún así tienen actividad residual con persistencia variable. Además, tienen susceptibilidad limitada a la lixiviación dentro del suelo con débil adsorción a los minerales de las arcillas. Los herbicidas usados en céspedes tienen adsorción variable a la materia orgánica del suelo, la cual depende del suelo mismo. La persistencia y la actividad de éstos herbicidas sulfonylurea se ven afectadas por el pH del suelo. A un pH de 7.0 o mayor, algunos de estos herbicidas sulfonylurea tienden a persistir por períodos más largos, con vidas medias que pueden extenderse por años en vez de días. En patrones de uso normal con pH del suelo de 7 o menor, la disipación ocurre vía hidrólisis química y degradación microbiana con vidas medias que varían de días a meses. En general, la adsorción del herbicida sulfonylurea está negativamente correlacionada al incremento del pH (incremento en persistencia) y positivamente correlacionada con un incremento de la materia orgánica (actividad disminuida).

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, J. J. and McKercher, R. B. 1990. Mobility of two herbicides in soil. J. Agric. Food Chem. 38:310315.Google Scholar
Berger, B. M. and Wolfe, N. L. 1996. Hydrolysis and biodegradation of sulfonylurea herbicides in aqueous buffers and anaerobic water-sediment systems: assessing fate pathways using molecular descriptors. Environ. Toxicol. Chem. 15:15001507.Google Scholar
Berisford, Y. C., Bush, P. B., and Taylor, J. W. Jr. 2006. Leaching and persistence of herbicides for kudzu (Pueraria montana) control on pine regeneration sites. Weed Sci. 54:391400.Google Scholar
Beyer, E. M. Jr., Brown, H. M., and Duffy, M. J. 1987. Sulfonylurea herbicide soil relations. Pages 531540 in Proceedings of the British Crop Protection Conference–Weeds. University of Wisconsin, BCPC Publication.Google Scholar
Beyer, E. M. Jr., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. Pages 117189 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation and Mode of Action. Volume 3. New York Marcel-Dekker.Google Scholar
Bhardwaj, G. 2007. From pioneering invention to sustained innovation: herbicides at DuPont. Chem. Heritage 25:3436.Google Scholar
Chen, Z. L., Kookana, R. S., and Naidu, R. 2000. Determination of sulfonylurea herbicides in soil extracts by solid-phase extraction and capillary zone electrophoresis. Chromatographia 52:142146.Google Scholar
Dermiyati, S. K. and Yamamoto, I. 1997a. Degradation of the herbicide halosulfuron-methyl in two soils under different environmental conditions. J. Pestic. Sci. 22:282287.Google Scholar
Dermiyati, S. K. and Yamamoto, I. 1997b. Relationships between soil properties and sorption behavior of the herbicide halosulfuron-methyl in selected Japanese soils. J. Pestic. Sci. 22:288292.Google Scholar
Gaul, M. C. and Christians, N. E. 1988. Selective control of annual bluegrass in cool-season turfgrasss with fenarimol and chlorsulfuron. Agron. J. 80:120125.Google Scholar
Grey, T. L., Mantripagada, N. U., Culpepper, A. S., and Webster, T. M. 2007. Halosulfuron-methyl, S-metholachlor, and sulfentrazone dissipation on bare-soil compared to soil under polyethylene mulch. Weed Sci. 55:638643.Google Scholar
LaRossa, R. A. and Schloss, J. V. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium . J. of Biological Chemistry 259:87568757.Google Scholar
Lycan, D. W. and Hart, S. E. 2005. Cool-season turfgrassgrass reseeding intervals for sulfosulfuron. Appl. Turfgrassgrass Sc. (Doi:10.1094/ATS-2005-0808-01-RS).Google Scholar
Maheswari, S. T. and Ramesh, A. 2007. Adsorption and degradation of sulfosulfuron in soils. Environ. Monit. Assess 127:97103.Google Scholar
Maloy, B. M. and Christians, N. E. 1986. Chlorsulfuron activity on seven cool-season grasses. HortScience 21:10121014.Google Scholar
Matocha, M. A. and Senseman, S. A. 2007. Trifloxysulfuron dissipation at selected pH levels and efficacy on Palmer amaranth (Amaranthus palmeri). Weed Technol. 21:674677.Google Scholar
McCullough, P. E. 2011. Turfgrassgrass Weed Control for Professional Managers. In 2011 Georgia Pesticide Management Handbook. http://www.ent.uga.edu/pmh/. Accessed Oct 25, 2011.Google Scholar
McCullough, P. E. and Nutt, W. 2010. Bermudagrass reseeding intervals for rimsulfuron, simazine, and sulfosulfuron. HortScience 45:693695.Google Scholar
Moyer, J. R. and Hamman, W. M. 2001. Factors affecting the toxicity of MON 37500 residues to following crops. Weed Technol. 15:4247.Google Scholar
Ray, T. B. 1982. The mode of action of chlorosulfuron: a new herbicide for cereals. Pestic. Biochem. Physiol. 17:1017.Google Scholar
Saha, S. and Kulshrestha, G. 2002. Degradation of sulfosulfuron, a sulfonylurea herbicide, as influenced by abiotic factors. J. Agric. Food Chem. 50:45724575.Google Scholar
Sarmah, A. K., Kookana, R. S., and Alson, A. M. 1998. Fate and behavior of triasulfuron, metsulfuron-methyl, and chlorsulfuron in the Australian soil environment: a review. Aust. J. Agric. Res. 49:775790.Google Scholar
Sarmah, A. K. and Sabadie, J. 2002. Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: a review. J. Agric. Food Chem. 50:62536265.Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America.Google Scholar