Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T02:02:52.890Z Has data issue: false hasContentIssue false

Switchgrass and Prairie Cordgrass Response to Foliar- and Soil-Applied Herbicides

Published online by Cambridge University Press:  20 January 2017

Eric K. Anderson
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Aaron G. Hager
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Thomas B. Voigt
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
D.K. Lee*
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
*
Corresponding author's E-mail: leedk@illinois.edu.

Abstract

Perennial grasses are expected to comprise a substantial portion of the lignocellulosic biomass to meet renewable energy mandates in the U.S. in the next decade. As many warm-season grasses are slow to establish from seed, plantings are often compromised by weed interference during the establishment year. Greenhouse experiments were conducted to determine the tolerance of switchgrass and prairie cordgrass to several herbicides applied PRE or POST (at four different growth stages). Preemergence atrazine at rates ≤ 1.684 kg ai ha−1 in switchgrass and quinclorac at rates ≤ 0.279 kg ai ha−1 in prairie cordgrass did not significantly reduce emergence, plant height, or biomass yield 8 wk after treatment. When treatments were applied at the two- to three-leaf stage, only atrazine (≤ 0.123 kg ai ha−1) did not reduce switchgrass fresh weight and only 2,4-D ester (≤ 0.533 kg ae ha−1), nicosulfuron (0.018 kg ai ha−1), and quinclorac (0.140 kg ha−1) did not significantly reduce prairie cordgrass yield. Phytotoxic effects decreased for all herbicides with increasing growth stage at the time of treatment for both species. All evaluated herbicides were safe with respect to biomass yield on the respective grasses when applied at the latest growth stage (approximately five-leaf stage). These results show that viable PRE and POST herbicides are available for weed control during establishment of switchgrass and prairie cordgrass; however, all evaluated herbicides would likely reduce biomass yield in a mixture planting of both grasses.

Se espera que las gramíneas perennes representen una porción sustancial de la biomasa lignocelulósica para cumplir con los mandatos de energías renovables en los Estados Unidos en la próxima década. Debido a que muchos de las gramíneas de clima cálido tienen un establecimiento lento a partir de semilla, las plantaciones están frecuentemente en riesgo debido a la interferencia de malezas durante el año de establecimiento. Se realizaron experimentos de invernadero para determinar la tolerancia de Panicum virgatum y de Spartina pectinata a varios herbicidas aplicados PRE o POST (en cuatro estadios de crecimiento diferentes). Atrazine en preemergencia a dosis ≤ 1.684 kg ai ha−1 en P. virgatum y quinclorac a dosis ≤ 0.279 kg ai ha−1 en S. pectinata no redujeron significativamente la emergencia, la altura de planta, ni el rendimiento de biomasa 8 semanas después del tratamiento. Cuando los tratamientos fueron aplicados en los estadios de dos a tres hojas, solamente atrazine (≤ 0.123 kg ai ha−1) no redujo el peso seco de P. virgatum y solamente 2,4-D ester (≤ 0.533 kg ae ha−1), nicosulfuron (0.018 kg ai ha−1), y quinclorac (0.140 kg ai ha−1) no redujeron significativamente el rendimiento de S. pectinata. Los efectos fitotóxicos disminuyeron para todos los herbicidas con el aumento en el estadio de crecimiento al momento del tratamiento para ambas especies. Todos los herbicidas evaluados fueron seguros con respecto al rendimiento de biomasa en las respectivas gramíneas cuando se aplicó en el estadio de crecimiento más tardío (aproximadamente estadio de 5-hojas). Estos resultados muestran que herbicidas PRE y POST viables están disponibles para el control de malezas durante el establecimiento de P. virgatum y S. pectinata. Sin embargo, todos los herbicidas evaluados probablemente reducirán el rendimiento de biomasa en una siembra mixta con ambas gramíneas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, EK, Voigt, TB, Bollero, GA, Hager, AG (2011) Miscanthus × giganteus response to tillage and glyphosate. Weed Technol 25:356362 Google Scholar
Anderson, EK, Lee, DK, Allen, DJ, Voigt, TB (2014) Agronomic factors in the establishment of tetraploid seeded Miscanthus × giganteus . GCB Bioenergy, In PressCrossRefGoogle Scholar
Anonymous (2008a) Accent® herbicide special local need 24(c) labeling: For control of annual and perennial grasses in switchgrass grown for biofuel in the state of Tennessee. DuPont Publication No. H-65674. Wilmington, DE: DuPont. 2 pGoogle Scholar
Anonymous (2008b) Paramount® herbicide product label. Research Triangle Park, NC: BASF Corporation. 12 pGoogle Scholar
Boe, A, Lee, DK (2007) Genetic variation for biomass production in prairie cordgrass and switchgrass. Crop Sci 47:929934 Google Scholar
Boe, A, Owens, V, Gonzalez-Hernandez, J, Stein, J, Lee, DK, Koo, BC (2009) Morphology and biomass production of prairie cordgrass on marginal lands. GCB Bioenergy 1:240250 CrossRefGoogle Scholar
Boydston, RA, Collins, HP, Fransen, SC (2010) Response of three switchgrass (Panicum virgatum) cultivars to mesotrione, quinclorac, and pendimethalin. Weed Technol 24:336341 Google Scholar
Curran, WS, Ryan, MR, Myers, MW, Adler, PR (2012) Effects of seeding date and weed control on switchgrass establishment. Weed Technol 26:248255 Google Scholar
EISA (2007) Energy Independence and Security Act of 2007, Pub. L. no. 110–140, 121 Stat. 1492, 1783–84 (Dec. 19, 2007), codified at 42 U.S.C. §17381Google Scholar
Fransen, SC, Collins, HP, Boydston, RA (2006) Perennial warm-season grasses for biofuels. 7 pg in Proceedings, 2006 Western Alfalfa and Forage Conference, December 11–13. Davis, CA UC-Davis Cooperative Extension. http://alfalfa.ucdavis.edu/+symposium/proceedings/2006/06–147.pdf. Accessed: May 28, 2013Google Scholar
Hintz, R, Harmoney, K, Moore, K, George, J, Brummer, E (1998) Establishment of switchgrass and big bluestem in corn with atrazine. Agron J 90:591596 Google Scholar
Hitchcock, AS (1971) Manual of the Grasses of the United States. Second edition revised by Agnes Chase. Mineola, NY: Dover Publications, Inc. P 697 Google Scholar
Hong, CO, Owens, VN, Lee, DK, Boe, A (2013) Switchgrass, big bluestem, and indiangrass monocultures and their two- and three-way mixtures for bioenergy in the northern Great Plains. BioEnergy Res 6:229239 Google Scholar
Jensen, NK (2013) Prairie Cordgrass Plant Guide. Washington, D.C.: United States Department of Agriculture, Natural Resource Conservation Service. http://plants.usda.gov/plantguide/pdf/pg_sppe.pdf. Accessed: February 13, 2014Google Scholar
Lynd, LR, Cushman, JH, Nichols, RJ, Wyman, CE (1991) Fuel ethanol from cellulosic biomass. Science 251:13181323 Google Scholar
Madakadze, IC, Coulman, BE, McElroy, AR, Stewart, KA, Smith, DL (1998) Evaluation of selected warm-season grasses for biomass production in areas with a short growing season. Bioresour Technol 65:112 Google Scholar
Martin, AR, Moomaw, RS, Vogel, KP (1982) Warm-season grass establishment with atrazine. Agron J 74:916920 Google Scholar
Masters, RA, Nissen, SJ, Gaussoin, RE, Beran, DD, Stougaard, RN (1996) Imidazolinone herbicides improve restoration of Great Plains grasslands. Weed Technol 10:392403 Google Scholar
McKenna, JR, Wolf, DD, Lentner, M (1991) No-till warm-season grass establishment as affected by atrazine and carbofuran. Agron J 83:311316 Google Scholar
Miesel, JR, Renz, MJ, Doll, JE, Jackson, RD (2012) Effectiveness of weed management methods in establishment of switchgrass and a native species mixture for biofuels in Wisconsin. Biomass Bioenergy 36:121131 Google Scholar
Minelli, M, Rapparini, L, Venturi, G (2004) Weed management in switchgrass crop. Pages 439441 in 2nd World Conference on Biomass for Energy, Industry and Climate Protection, 10–14 May. Florence, Italy ETA Florence Renewable Energies. http://www.cres.gr/bioenergy_chains/files/pdf/Articles/7-Rome%20V1A_111.pdf. Accessed: May 9, 2013Google Scholar
Mitchell, RB, Vogel, KP, Berdahl, J, Masters, RA (2010) Herbicides for establishing switchgrass in the central and northern Great Plains. BioEnergy Res 3:321327 Google Scholar
Parrish, DJ, Fike, JH (2009) Selecting, establishing, and managing switchgrass (Panicum virgatum) for biofuels. Biofuels Methods Protoc 581:2740 Google Scholar
Parrish, DJ, Fike, JH, Bransby, DI, Samson, R (2008) Establishing and managing switchgrass as an energy crop. Forage and Grazinglands DOI: .Google Scholar
Perrin, R, Vogel, K, Schmer, M, Mitchell, R (2008) Farm-scale production cost of switchgrass for biomass. BioEnergy Res 1:9197 Google Scholar
Sanderson, MA, Reed, RL, McLaughlin, SB, Wullschleger, SD, Conger, BV, Parrish, DJ, Wolf, DD, Taliaferro, C, Hopkins, AA, Ocumpaugh, WR, Hussey, MA, Read, JC, Tischler, CR (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56:8393 Google Scholar
Saxton, AM (1998) A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246 in Proc. 23rd SAS Users Group Intl., March 22–25. Nashville, TN: SAS Institute, Inc. Google Scholar
Scheinost, P, Tilley, D, Ogle, D, Stannard, M (2008) Tall Wheatgrass Plant Guide. Pullman, WA: United States Department of Agriculture, Natural Resources Conservation Service. 5p. https://plants.usda.gov/plantguide/pdf/pg_thpo7.pdf. Accessed: June 12, 2013Google Scholar
Schnepf, R, Yacobucci, BD (2013) Renewable Fuel Standard: Overview and Issues. March 14, 2013: CRS Report for Congress. Congressional Research Service. Pages 35 p. http://www.fas.org/sgp/crs/misc/R40155.pdf. Accessed: January 22, 2014Google Scholar
Sekutowski, TR, Dziagwa, M (2012) Weed problem on the newly established prairie cordgrass (Spartina pectinata) plantations intended for energetic purposes. J Cent Eur Agric 13:253261 Google Scholar
Somerville, C, Youngs, H, Taylor, C, Davis, SC, Long, SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790792 CrossRefGoogle ScholarPubMed
Tilman, D (1996) Biodiversity: Population versus ecosystem stability. Ecol 77:350363 CrossRefGoogle Scholar
Tilman, D, Wedin, D, Knops, J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718720 Google Scholar
[USDA] United States Department of Energy (2011) U.S. Billion Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. Perlack, RD, Stokes, BJ (Leads), ORNL/TM-2011/224. Oak Ridge, TN: Oak Ridge National Laboratory. 235 pGoogle Scholar
Vogel, KP (1987) Seeding rates for establishing big bluestem and switchgrass with preemergence atrazine applications. Agron J 79:509512 Google Scholar
Weaver, JE (1954) North American Prairie. Lincoln, NE: Johnsen Publishing Co. P. 359 Google Scholar
Wilson, RG (1995) Effect of imazethapyr on perennial grasses. Weed Technol 9:187191 Google Scholar
Wolf, DD, Fiske, DA (1995) Planting and Managing Switchgrass for Forage, Wildlife, and Conservation. Cooperative Extension Publication 418–013. Blacksburg, VA: Virginia Polytechnic Institute and State University Virginia. 4 p. http://pubs.ext.vt.edu/418/418-013/418-013_pdf.pdf. Accessed: May 30, 2013Google Scholar