Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T08:30:33.508Z Has data issue: false hasContentIssue false

Winter Annual Weed Suppression in Rye–Vetch Cover Crop Mixtures

Published online by Cambridge University Press:  20 January 2017

Zachary D. Hayden*
Affiliation:
Department of Horticulture, Michigan State University, East Lansing, MI 48824
Daniel C. Brainard
Affiliation:
Department of Horticulture, Michigan State University, East Lansing, MI 48824
Ben Henshaw
Affiliation:
Department of Horticulture, Michigan State University, East Lansing, MI 48824
Mathieu Ngouajio
Affiliation:
Department of Horticulture, Michigan State University, East Lansing, MI 48824
*
Corresponding author's E-mail: haydenza@msu.edu

Abstract

Winter annual weeds can interfere directly with crops and serve as alternative hosts for important pests, particularly in reduced tillage systems. Field experiments were conducted on loamy sand soils at two sites in Holt, MI, between 2008 and 2011 to evaluate the relative effects of cereal rye, hairy vetch, and rye–vetch mixture cover crops on the biomass and density of winter annual weed communities. All cover crop treatments significantly reduced total weed biomass compared with a no-cover-crop control, with suppression ranging from 71 to 91% for vetch to 95 to 98% for rye. In all trials, the density of nonmustard family broadleaf weeds was either not suppressed or suppressed equally by all cover crop treatments. In contrast, the density of mustard family weed species was suppressed more by rye and rye–vetch mixtures than by vetch. Cover crops were more consistently suppressive of weed dry weight per plant than of weed density, with rye-containing cover crops generally more suppressive than vetch. Overall, rye was most effective at suppressing winter annual weeds; however, rye–vetch mixtures can match the level of control achieved by rye, in addition to providing a potential source of fixed nitrogen for subsequent cash crops.

Las malezas anuales de invierno pueden interferir directamente con los cultivos y pueden servir como hospederos alternativos para plagas importantes, particularmente en sistemas con labranza reducida. Se realizaron experimentos de campo en suelos areno limosos en dos sitios en Holt, Michigan entre 2008 y 2011 para evaluar los efectos relativos de los cultivos de cobertura Secale cereale, Vicia villosa y la mezcla S. cereale-V. villosa sobre la biomasa y la densidad de las comunidades de malezas anuales de invierno. Todos los tratamientos de cultivos de cobertura redujeron significativamente la biomasa total de malezas en comparación con el testigo sin cultivo de cobertura, con una supresión que varió de 71 a 91% en el caso de V. villosa y de 95 a 98% en el caso de S. cereale. En todos los experimentos, la densidad de malezas de hoja ancha que no pertenecen a la familia de la mostaza (Brassicaceae) no fue suprimida o fue suprimida de la misma forma por todos los tratamientos de cobertura. En contraste, la densidad de la familia de la mostaza fue suprimida más por los tratamientos con S. cereale que el tratamiento de V. villosa. Los cultivos de cobertura fueron más consistentemente supresores del peso seco por individuo de malezas que de la densidad de malezas, y las coberturas que contenían S. cereale fueron más supresoras que la cobertura de V. villosa.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aarssen, L., Ivan, V., and Jensen, K. 1986. The biology of Canadian weeds: 76. Vicia angustifolia L., V. cracca L., V. sativa L., V. tetrasperma (L.) Schreb. and V. villosa Roth. Can. J. Plant. Sci. 66 :711737.Google Scholar
Akemo, M., Regnier, E., and Bennett, M. 2000. Weed suppression in spring-sown rye (Secale cereale)–pea (Pisum sativum) cover crop mixes. Weed Technol. 14 :545549.CrossRefGoogle Scholar
Barnes, J. P. and Putnam, A. R. 1986. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci. 34 :384390.CrossRefGoogle Scholar
Blackshaw, R. E., Brandt, R. N., Janzen, H. H., Entz, T., Grant, C. A., and Derksen, D. A. 2003. Differential response of weed species to added nitrogen. Weed Sci. 51 :532539.CrossRefGoogle Scholar
Boyd, N. S., Brennan, E. B., Smith, R. F., and Yokota, R. 2009. Effect of seeding rate and planting arrangement on rye cover crop and weed growth. Agron. J. 101 :4751.Google Scholar
Brainard, D. C., Bakker, J., Myers, N., and Noyes, D. C. 2012c. Rye living-mulch effects on soil moisture and weeds in asparagus. HortScience 47 :5863.CrossRefGoogle Scholar
Brainard, D. C., Bellinder, R. R., and Kumar, V. 2011. Grass–legume mixtures and soil fertility affect cover crop performance and weed seed production. Weed Technol. 25 :473479.CrossRefGoogle Scholar
Brainard, D. C., Henshaw, B., and Snapp, S. 2012a. Hairy vetch varieties and bi-cultures influence cover crop services in strip-tilled sweet corn. Agron. J. 104 :629638.Google Scholar
Brainard, D. C., Peachey, E., Haramoto, E., Luna, J., and Rangarajan, A. 2012b. Weed ecology and management under strip-tillage: Implications for Northern U.S. vegetable cropping systems. Weed Technol. In review.CrossRefGoogle Scholar
Brennan, E. B., Boyd, N. S., Smith, R. F., and Foster, P. 2011. Comparison of rye and legume–rye cover crop mixtures for vegetable production in California. Agron J. 103 :449463.CrossRefGoogle Scholar
Brennan, E. B. and Smith, R. F. 2005. Winter cover crop growth and weed suppression on the central coast of California. Weed Technol. 19 :10171024.CrossRefGoogle Scholar
Carrera, L. M., Abdul-Baki, A. A., and Teasdale, J. R. 2004. Cover crop management and weed suppression in no-tillage sweet corn production. HortScience 39 :12621266.CrossRefGoogle Scholar
Chen, M., Shelton, A. M., Wang, P., Hoepting, C. A., Kain, W. C., and Brainard, D. C. 2009. Occurrence of the new invasive insect Contarinia nasturtii (Diptera: Cecidomyiidae) on cruciferous weeds. J. Econ. Entomol. 102 :115120.CrossRefGoogle ScholarPubMed
Cici, S.Z.H. and Van Acker, R. C. 2009. A review of the recruitment biology of winter annual weeds in Canada. Can. J. Plant Sci. 89 :575589.CrossRefGoogle Scholar
Clark, A. J., ed. 2007. Managing Cover Crops Profitably. 3rd ed. Beltsville, MD : Sustainable Agriculture Network.Google Scholar
Clark, A. J., Meisinger, J. J., Decker, A. M., and Mulford, F. R. 2007. Effects of a grass-selective herbicide in a vetch–rye cover crop system on nitrogen management. Agron. J. 99 :3642.Google Scholar
Creech, J. E., Johnson, W. G., Faghihi, J., and Ferris, V. R. 2007. Survey of Indiana producers and crop advisors: a perspective on winter annual weeds and soybean cyst nematode (Heterodera glycines). Weed Technol. 21 :532536.CrossRefGoogle Scholar
Creech, J. E., Westphal, A., Ferris, V. R., Faghihi, J., Vyn, T. J., Santini, J. B., and Johnson, W. G. 2008. Influence of winter annual weed management and crop rotation on soybean cyst nematode (Heterodera glycines) and winter annual weeds. Weed Sci. 56 :103111.CrossRefGoogle Scholar
[CTIC] Conservation Technology Information Center. 2008. National Crop Residue Management Survey. http://www.ctic.purdue.edu/CRM/. Accessed: March 10, 2012.Google Scholar
Duffus, J. E. 1971. Role of weeds in the incidence of virus diseases. Annu. Rev. Phytopathol. 9 :319340.CrossRefGoogle Scholar
Groves, R. L., Walgenbach, J. F., Moyer, J. W., and Kennedy, G. G. 2001. Overwintering of Frankliniella fusca (Thysanoptera: Thripidae) on winter annual weeds infected with tomato spotted wilt virus and patterns of virus movement between susceptible weed hosts. Phytopathology 91 :891899.CrossRefGoogle ScholarPubMed
Hayhoe, K., Wake, C. P., Huntington, T. G., Luo, L., Schwartz, M. D., Sheffield, J., Wood, E., Anderson, B., Bradbury, J., DeGaetano, A., Troy, T. J., and Wolfe, D. 2006. Past and future changes in climate and hydrological indicators in the US Northeast. Clim. Dynam. 28 :381407.CrossRefGoogle Scholar
Jannink, J. L., Merrick, L. C., Liebman, M., Dyck, E. A., and Corson, S. 1997. Management and winter hardiness of hairy vetch in Maine. Orono, ME : Maine Agricultural and Forest Experiment Station Technical Bulletin no. 167. Pages 35 p.Google Scholar
Jensen, E. S. 1996. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea–barley intercrops. Plant Soil 182 :2538.CrossRefGoogle Scholar
Jordan, N. and Vatovec, C. 2004. Agroecological benefits from weeds. Pages 137158 in Inderjit, , ed. Weed Biology and Management. Boston : Kluwer.CrossRefGoogle Scholar
Kay, Q.O.N. 1971. Anthemis cotula L. J. Ecol. 59 :623636.CrossRefGoogle Scholar
Kumar, V., Brainard, D. C., and Bellinder, R. R. 2008. Suppression of Powell amaranth (Amaranthus powellii), shepherd's-purse (Capsella bursa-pastoris), and corn chamomile (Anthemis arvensis) by buckwheat residues: role of nitrogen and fungal pathogens. Weed Sci. 56 :271280.CrossRefGoogle Scholar
Liebman, M. and Dyck, E. A. 1993. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3 :92122.CrossRefGoogle ScholarPubMed
Liebman, M. and Gallandt, E. R. 1997. Many little hammers: Ecological approaches for management of crop–weed interactions. Pages 291346 in Jackson, L. E., ed. Ecology in Agriculture. San Diego, CA : Academic.CrossRefGoogle Scholar
Liebman, M., Mohler, C. L., and Staver, C. P. 2001. Ecological Management of Agricultural Weeds. 1st ed. Cambridge, UK : Cambridge University Press. 532 p.CrossRefGoogle Scholar
McCracken, D. V., Smith, M. S., Grove, J. H., Mackown, C. T., and Blevins, R. L. 1994. Nitrate leaching as influenced by cover cropping and nitrogen source. Soil Sci. Soc. Am. J. 58 :14761483.CrossRefGoogle Scholar
Mennan, H., Ngouajio, M., Isik, D., and Kaya, E. 2009. Effects of alternative winter cover cropping systems on weed suppression in organically grown tomato (Solanum lycopersicum). Phytoparasitica 37 :385396.CrossRefGoogle Scholar
Mirsky, S. B., Gallandt, E. R., Mortensen, D. A., Curran, W. S., and Shumway, D. I. 2010. Reducing the germinable weed seedbank with soil disturbance and cover crops. Weed Res. 50 :341352.CrossRefGoogle Scholar
Mohler, C. L. and Liebman, M. 1987. Weed productivity and composition in sole crops and intercrops of barley and field pea. J. Appl. Ecol. 24 :685699.CrossRefGoogle Scholar
Norris, R. F. and Kogan, M. 2005. Ecology of interactions between weeds and arthropods. Annu. Rev. Entomol. 50 :479503.CrossRefGoogle ScholarPubMed
Ofori, F. and Stern, W. R. 1987. Cereal–legume intercropping systems. Adv. Agron. 41 :4190.CrossRefGoogle Scholar
Ogg, A. G., Stephens, R. H., and Gealy, D. R. 1993. Growth analysis of mayweed chamomile (Anthemis cotula) interference in peas (Pisum sativum). Weed Sci. 41 :394402.CrossRefGoogle Scholar
Pimentel, D., Zuniga, R., and Morrison, D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52 :273288.CrossRefGoogle Scholar
Poggio, S. L. 2005. Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agr. Ecosyst. Environ. 109 :4858.CrossRefGoogle Scholar
Ranells, N. N. and Wagger, M. G. 1996. Nitrogen release from grass and legume cover crop monocultures and bicultures. Agron. J. 88 :777782.Google Scholar
Rich, J. R., Brito, J. A., Kaur, R., and Ferrell, J. A. 2009. Weed species as hosts of Meloidogyne: a review. Nematropica 39 :157185.Google Scholar
Sainju, U. M., Whitehead, W. F., and Singh, B. P. 2005. Biculture legume–cereal cover crops for enhanced biomass yield and carbon and nitrogen. Agron. J. 97 :14031412.Google Scholar
Sarrantonio, M. 1994. Northeast Cover Crop Handbook. Emmaus, PA : Rodale Institute. 118 p.Google Scholar
Schaad, N. W. and Dianese, J. C. 1981. Cruciferous weeds as sources of inoculum of Xanthomonas campestris in black rot of crucifers. Phytopathology 71 :12151220.CrossRefGoogle Scholar
Shipley, P. R., Meisinger, J. J., and Decker, A. M. 1992. Conserving residual corn fertilizer nitrogen with winter cover crops. Agron. J. 84 :869876.Google Scholar
Teasdale, J. R. 1996. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 9 :475479.CrossRefGoogle Scholar
Teasdale, J. R., Devine, T. E., Mosjidis, J. A., Bellinder, R. R., and Beste, C. E. 2004. Growth and development of hairy vetch cultivars in the northeastern United States as influenced by planting and harvesting date. Agron. J. 96 :12661271.Google Scholar
Teasdale, J. R. and Mohler, C. L. 1993. Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron. J. 85 :673–673.Google Scholar
Timper, P., Davis, R. F., and Tillman, P. G. 2006. Reproduction of Meloidogyne incognita on winter cover crops used in cotton production. J. Nematol. 38 :8389.Google ScholarPubMed
Turkington, R., Norman, C. K., and Franko, G. D. 1980. The biology of Canadian weeds: 42. Stellaria media (L.) Vill. Can. J. Plant. Sci. 60 :981992.Google Scholar
Wagger, M. G., Cabrera, M. L., and Ranells, N. N. 1998. Nitrogen and carbon cycling in relation to cover crop residue quality. J. Soil Water Conserv. 53 :214218.Google Scholar
Welbank, P. J. 1963. A comparison of competitive effects of some common weed species. Ann. Appl. Biol. 51 :107125.CrossRefGoogle Scholar
Wisler, G. C. and Norris, R. F. 2005. Interactions between weeds and cultivated plants as related to management of plant pathogens. Weed Sci. 53 :914917.CrossRefGoogle Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20 :301307.CrossRefGoogle Scholar