Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T07:14:39.621Z Has data issue: false hasContentIssue false

Chicken genome modelling for the benefit of science

Published online by Cambridge University Press:  27 January 2016

M. STUPAR
Affiliation:
University of Belgrade, Vinča Institute of Nuclear Science, PO Box 522, 11000 Belgrade, Serbia
V. VIDOVIĆ
Affiliation:
University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
D. LUKAČ*
Affiliation:
University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
N. PUVAČA
Affiliation:
University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia Patent co., Vlade Ćetkovića 1a, 24211 Mišićevo, Serbia
*
Corresponding author: dragomir.lukac@stocarstvo.edu.rs
Get access

Abstract

In the early 21st century, genetic modification of chicken primordial germ cells (PGCs) had not been possible before their transfer and recovery through germ line. Chicken PGCs resist deliberate genetic modification, probably by silencing the transgenes in the genome. The use of mobile genetic elements (transposons) in genetic modification and germ-line transmission of PGCs has recently overcome this problem, so that PGCs can be used for further chicken genome modelling in order to study developmental biology, non-coding RNA (ncRNA) functions, viral DNA-RNA hybridisation, silencing of transgene expression, together with epigenetic modification, and gene function. Application of the transposons, viral integrase, zinc-finger nuclease and site-specific recombinase in whole genome elucidation is not sufficient. The chicken PGCs can be used as a model of choice to establish a new generation of methodology for genome modelling. For this purpose the livesome vectors are proposed.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AGGARWAL, A.K., WAH, D.A., HIRSH, J.A., DORNER, L.F. and SCHILDKRAUT, I. (1997) Structure of the multimodular endonuclease FokI bound to DNA. Nature 388: 97-100.Google Scholar
AMBROS, V. (2004) The function of animal microRNAs. Nature 431: 350-355.CrossRefGoogle ScholarPubMed
BIBIKOVA, M., GOLIC, M., GOLIC, K.G. and CAROLL, D. (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161: 1169-1175.CrossRefGoogle ScholarPubMed
BLANKENSHIP, R.E. (2001) Molecular evidence for the evolution of photosynthesis. Trends in Plant Sciences 6: 4-6.CrossRefGoogle ScholarPubMed
BOLDUC, B., SHAUGHNESSY, D.P., WOLF, Y.I., KOONIN, E.V., ROBERTO, F.F. and YOUNG, M. (2012) Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. Journal of Virology 86: 5562-5573.CrossRefGoogle ScholarPubMed
BOSSELMAN, R.A., HSU, R.Y., BOGGS, T., HU, S., BRUSZEWSKI, J., OU, S., KOZAR, L., MARIN, F., GREEN, C. and JACOBSON, F. (1989) Germline transmission of exogenous genes in the chicken. Science 243: 533-535.CrossRefGoogle ScholarPubMed
BRUSSEL, A. and SONIGO, P. (2004) Evidence for gene expression by unintegrated human immunodeficiency virus type I DNA species. Journal of Virology 78: 11263-11271.CrossRefGoogle ScholarPubMed
CAMBIONG, J., IGLESIAS, N., FICKENTSCHER, C., DIEPPOIS, G. and STUTZ, F. (2007) Antisense RNA stabilisation induces transcriptional gene silencing vie histone deacetylation in S. cerevisiae. Cell 131: 706-717.CrossRefGoogle Scholar
CHAN, A.W.S., HOMAN, E.J., BALLOU, L.U., BURNS, J.C. and BREMEL, D.R. (1998) Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proceedings of the National Academy of Sciences 95: 14028-14033.CrossRefGoogle ScholarPubMed
DAI, F.P., YUSUF, F., FARJAH, G.H. and BRAND-SABERI, B. (2005) RNA-I induced targeted silencing of developmental control genes during chicken embryogenesis. Developmental Biology 285: 80-90.CrossRefGoogle Scholar
DIEMER, G. and STEDMAN, K.M. (2012) A novelvirus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biology Direct 7: doi:10.1186/ 1745-6150-7-13.Google Scholar
DINGER, M.E., AMARAL, P.P., MERCER, T.R., PANG, K.C., BRUCE, S.J., GARDINER, B.B., ASKARIAN-AMIRI, M.E., RU, K., SOLDA, G. and SIMONS, C. (2008) Long noncoding RNAs in mouse embryonic stem cells pluripotency and differentiation. Genome Research 18: 1433-1445.CrossRefGoogle ScholarPubMed
FRASER, M.J., CLSZCZON, T., ELICK, T. and BAUSER, C. (1996) Precise excision of TTAA-specific lep idopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Molecular Biology 5: 141-151.CrossRefGoogle Scholar
HAYDEN, E.J., RILEY, C.A., BURTON, A.S. and LEHMAN, N. (2005) RNA-directed construction of structurally complex and active ligase ribosomes through recombination. RNA 11: 1678-1687.CrossRefGoogle Scholar
IVICS, Z., HACKETT, P.B., PLASTERK, R.H. and IZSVÁK, Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91: 501-510.CrossRefGoogle ScholarPubMed
JAENISCH, R. (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proceedings of the National Academy of Sciences 73: 1260-1264.CrossRefGoogle ScholarPubMed
KIM, Y.G., CHA, J. and CHANDRASEGARAN, S. (1996) Hybrid restriction enzymes: zinc-finger fussion to FokI cleavage domain. Proceedings of the National Academy of Sciences 93: 1156-1159.CrossRefGoogle Scholar
LEIGHTON, P.A., VAN DE LAVOIR, M.C. and DIAMOND, J.H. (2008) Genetic modification of primordial cells by gene trepping, gene targeting, and phiC31 integrase. Journal of Reproduction and Development 75: 1163-1175.CrossRefGoogle ScholarPubMed
LILLICO, S.G., SHERMAN, A., MCGREW, J.M., ROBERTSON, C.D., SMITH, J., HASLAM, C., BARNARD, P., RADCLIFFE, P.A., MITROPHANOUS, K.A., ELLIOT, E.A. and SANG, H.M. (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proceedings of the National Academy of Sciences 104: 1771-1776.CrossRefGoogle ScholarPubMed
LIM, S.F., RIEHN, R., RYU, S.W., KHANARIAN, N., TUNG, C., TANK, D. and AUSTIN, R.H. (2006) In vivo and scanning electron microscope imaging of upconverting nanophosphorus in Caenorhabditis elegans. Nano Letters 6: 169-174.CrossRefGoogle Scholar
LOMBARDO, A., GENOVESE, P., BEAUSEJOUR, C.M., COLLEONI, S., LEE, Y.L., KIM, K.A., ANDO, D., URNOV, F.D., GALLI, C., GREGORY, P., HOLMES, M.C. and NALDINI, L. (2007) Gene editing in human stem cells using zinc-finger nuclease and integrase-defective lentiviral vector delivery. Nature Biotechnology 25: 1298-1306.CrossRefGoogle ScholarPubMed
LYALI, J., IRVINE, R.M., SHERMAN, A., MCKINLEY, T.J., NÚÑEZ, A., PURDIE, A., OUTTRIM, L., BROWN, I.H., ROLLESTON-SMITH, G., SANG, H. and TILEY, L. (2011) Suppression of avian influenza transmission in genetically modified chickens. Science 331: 223-226.CrossRefGoogle Scholar
MAcDONALD, J., TAYLOR, L., SHERMAN, A., KAWAKAMI, K., TAKAHACHI, Y., SANG, H.M. and McGREW, M.J. (2012) Efficient genetic modification of germ-line transmission of primordial germ cells using piggybac and Tol2 transposons. Proceedings of the National Academy of Sciences 109: E1466-E1472.CrossRefGoogle Scholar
MATHIEU, O. and BENDER, J. (2004) RNA-directed DNA methylation via RNAi/siRNA. Journal of Cell Science 117: 4881-4888.CrossRefGoogle Scholar
NALDINI, L., BLOMER, U., GALLAY, P., ORY, D., MULLIGAN, R., GAGE, F.H., VERMA, I.M. and TRONO, D. (1996) In vivo gene delivery and stable transduction of non-dividing cells by a lentiviral vector. Science 272: 263-267.CrossRefGoogle Scholar
NIWA, H., YAMAMURA, K. and MIYAZAKI, J. (1991) Efficient selection for high-expression transfectans with a non-eukaryotic vector. Gene 108: 193-199.Google Scholar
O'GORMAN, S., FOX, D.T. and WAHL, G.M. (1991) Recombinaseme-diated gene activation and site-specific integration in mammalian cells. Science 251: 1351-1355.CrossRefGoogle ScholarPubMed
OICHI, I., KIM, S., YOSHII, K., ESTEBAN, C.R. and BELMONTE, J.C.I. (2011) Cre-LoxP-regulated expression of monoclonal antibodies driven by an ovalbumin promoter in primary oviduct cells. BMC Biotechnology 11: doi:10.1186.1472-6750-11-5.Google Scholar
PARK, T.S. and HAN, J.Y. (2012) A piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chicken. Proceedings of the National Academy of Sciences 109: 9337-9341.CrossRefGoogle Scholar
PARK, T.S., LEE, H.J., KIM, K.H., KIM, J.S. and HAN, J.Y. (2014) Targeted gene knockout in chicken mediated by TALENs. Proceedings of the National Academy of Sciences 111: 12716-12721.CrossRefGoogle ScholarPubMed
POWNER, M.W., GERLAND, B. and SUTHERLAND, J.D. (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459: 239-242.CrossRefGoogle ScholarPubMed
PUEYO, J.I. and COUSO, J.P. (2008) The 11-aminoacid long Tarsal-less peptides trigger a cell signal in Drosophila leg development. Developmental Biology 324: 192-201.CrossRefGoogle ScholarPubMed
SALTER, D.W., PAYNE, W.S., CRITTENDEN, L.B., FEDERSPIEL, M.J., PETROPOULOS, C.J., BRADAC, J.A. and HUGHES, S. (1993) Avian leucosis retroviruses and gene transfer into the avian genome, in: ETCHES, R.J. & GIBBINS, A.M.V. (Eds) Manipulation of the Avian Genome, pp. 135-150 (CRC Press. Boca Raton).Google Scholar
SAUER, B. and HENDERSON, N. (1998) Site-specific DNA recombination in mammalian cells by the CRE recombinase of bacteriophage P1. Proceedings of the National Academy of Sciences 85: 5166-5170.CrossRefGoogle Scholar
SCHMITT, S., PRESTEL, M. and PARO, R. (2005) Intergenic transcription through a Polycomb group response element counteracts silencing. Genes & Development 19: 697-708.CrossRefGoogle ScholarPubMed
SCHRAUWEN, J.A.E., BESTEBROER, T.M., RIMMELTZWAAN, G.F., OSTERHAUS, A.D.M.E., FOUCHIER, R.A.M. and HERFST, S. (2013) Reasortment between avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments. PLOS one 8: e59889 doi:10.13731/journal.pone.0059889.CrossRefGoogle Scholar
STUPAR, M. (1981) Restriction map of Influenca A virus matrix gene. Genetic Congress of Yugoslavia 2: 62-63.Google Scholar
STUPAR, M. and VIDOVIĆ, V. (2013) Genome evolution. Stylos, Novi Sad, Serbia. ISBN 978-86-7520-250-9. COBISS SR-ID, 277079303.Google Scholar
TASIĆ, B., HIPPENMEYER, S., WANG, C., GAMBOA, M., ZONG, H., CHEN-TSAI, Y. and LUO, L. (2011) Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proceedings of the National Academy of Sciences 108: 7902-7907.CrossRefGoogle ScholarPubMed
THORPE, H.M. and SMITH, M.C. (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proceedings of the National Academy of Sciences 95: 5505-5510.CrossRefGoogle ScholarPubMed
VARGAS, J., GUSELLA, G.L., NAJFELD, V., KLOTMAN, M.E. and CARA, A. (2004) Novel integrase-defective lentiviral episomal vectors for gene transfer. Human Gene Therapy 15: 361-372.CrossRefGoogle ScholarPubMed
WU, Y. and MARSH, J.W. (2003) Early transcription from nonintegrated DNA in human immunodeficiency virus infection. Journal of Virology 77: 10376-10382.CrossRefGoogle ScholarPubMed
YAMASAKI, T., MIYASAKA, H. and OHAMA, T. (2008) Unstable RNAi effects through epigenetic silencing of an inverted repeat transgene in Chlamydomonas reinhardtii. Genetics 180: 1927-1944.CrossRefGoogle ScholarPubMed
YU, W., GIUS, D., ONYANGO, P., MULDOON-JACOBS, K., KARP, J., FEINBERG, A.P. and CUI, H. (2008) Epigenetic silencing of tumor suppressor gene p15 by its antisense RNA. Nature 451: 202-206.CrossRefGoogle ScholarPubMed