Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T12:01:41.904Z Has data issue: false hasContentIssue false

Inulin in poultry production

Published online by Cambridge University Press:  28 February 2017

M. BUCŁAW*
Affiliation:
Department of Poultry and Ornamental Birds Breeding, Western Pomeranian University of Technology in Szczecin, Poland
*
Corresponding author: mateusz.buclaw@zut.edu.pl
Get access

Abstract

Since 2006, when the European Union imposed a total ban on the use of antibiotic growth promoters, scientific interest has focused on natural feed additives that might be positive to both production performance and animal health. Inulin is a prebiotic, which occurs naturally in many plants as a storage material. The specific structure of inulin underlies the fact that it is not digested by the host digestive enzymes. Unchanged, the prebiotic reaches the large intestine, where it undergoes fermentation and becomes a substrate for some strains of healthy bacteria. Current literature contains information on the effects of inulin on broiler performance and laying performance of hens. It may be concluded from data available that inulin is beneficial in the production of poultry meat and eggs. Inulin may improve feed intake and conversion, stimulate weight gains, strengthen the skeletal system, improve carcass yields and the production and quality of eggs. However, reports on the subject are scarce, and the results they present vary substantially. The mode of action of inulin appears to be complex, multidirectional and is not yet fully understood. The ambiguous character of inulin may result from the fact that its effectiveness in poultry nutrition depends on a number of factors. Despite these unresolved issues, the positive properties of inulin may be of benefit to the poultry industry.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALZUETA, C., RODRÍGUEZ, M.L., ORTIZ, L.T., REBOLÉ, A. and TREVIÑO, J. (2010) Effects of inulin on growth performance, nutrient digestibility and metabolisable energy in broiler chickens. British Poultry Science 51: 393-398.Google Scholar
CHEN, Y.C. and CHEN, T.C. (2004) Mineral Utilisation in Layers as Influenced by Dietary Oligofructose and Inulin. International Journal of Poultry Science 3: 442-445.Google Scholar
CHEN, Y.C., NAKTHONG, C. and CHEN, T.C. (2005a) Effects of Chicory Fructans on Egg Cholesterol in Commercial Laying Hen. International Journal of Poultry Science 4: 109-114.Google Scholar
CHEN, Y.C., NAKTHONG, C. and CHEN, T.C. (2005b) Improvement of Laying Hen Performance by Dietary Prebiotic Chicory Oligofructose and Inulin. International Journal of Poultry Science 4: 103-108.Google Scholar
DANKOWIAKOWSKA, A., KOZŁOWSKA, I. and BEDNARCZYK, M. (2013) Probiotics, prebiotics and synbiotics in poultry-mode of action, limitation, and achievements. Journal of Central European Agriculture 14: 467-478.Google Scholar
DIBNER, J.J., RICHARDS, J.D., KITCHELL, M.L. and QUIROZ, M.A. (2007) Metabolic challenges and early bone development. The Journal of Applied Poultry Research 16: 126-137.Google Scholar
ELRAYEH, A.S. and YILDIZ, G. (2012) Effects of inulin and β-glucan supplementation in broiler diets on growth performance, serum cholesterol, intestinal length, and immune system. Turkish Journal of Veterinary & Animal Sciences 36: 388-394.Google Scholar
GÓRECKA, D., KONIECZNY, P. and GRAMZA-MICHAŁOWSKA, A. (2009) Inulina - znaczenie żywieniowe i technologiczne [Inulin - nutritional and technological importance]. Przemysł Spożywczy 10: 22-27.Google Scholar
HARTINI, S., CHOCT, M., HINCH, G. and NOLAN, J.V. (2003) The relationship between physico-chemical properties of fibre and their effects on the gut weight of chickens. Proceedings of the Australian Poultry Science Symposium 15: 135-139.Google Scholar
HEJDYSZ, M., WIĄZ, M., JÓZEFIAK, D., KACZMAREK, S. and RUTKOWSKI, A. (2012) Wykorzystanie wybranych kwasów organicznych i ich mieszanin w żywieniu kurcząt rzeźnych [The use of selected organic acids and mixtures thereof in feeding meat chickens]. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego 8: 59-68.Google Scholar
HU, T.M., LU, Y.J. and WU, H.X. (2010) Effects of inulin on performance, egg quality, gut microflora and serum and yolk cholesterol in laying hens. British Poultry Science 51: 791-796.Google Scholar
KOWALCZYK, E., PATYRA, E. and KWIATEK, K. (2012) Wybrane dodatki paszowe w produkcji zwierzęcej [Selected feed supplements in animal production]. Pasze Przemysłowe, Monografia 3: 90-95. [In Polish].Google Scholar
KUCUKERSAN, M.K., KOKSAL, B.H. and CAKIN, K. (2011) Effects of dietary L-carnitine and/or inulin supplementation on growth performance, carcass traits, visceral organs and some blood biochemical parameters in broilers. Revue Medecine Veterinaire 162: 552-557.Google Scholar
JÓZEFIAK, D., KACZMAREK, S. and RUTKOWSKI, A. (2008) A note on the effects of selected prebiotics on the performance and ileal microbiota of broiler chickens. Journal of Animal and Feed Sciences 17: 392-397.CrossRefGoogle Scholar
JULIAN, R.J. (2005) Production and growth related disorders and other metabolic diseases of poultry - A review. The Veterinary Journal 169: 350-369.CrossRefGoogle ScholarPubMed
LESSIRE, M. and ETIENNE, M. (2007) Przełom w naturalnych bioaktywnych produktach stosowanych jako dodatki paszowe w produkcji drobiu i trzody chlewnej jako alternatywa dla antybiotyków [A breakthrough in natural, bioactive products used as feed additives in the production of poultry and pigs as an alternative to antibiotics]. Biuletyn Polskiego Związku Producentów Pasz 52: 19-24.Google Scholar
NABIZADEH, A. (2012a) The effect of inulin inclusion in low phosphorus diets on some hematological, immunological parameters and broiler chickens performance. Research Journal of Animal Sciences 6: 60-66.Google Scholar
NABIZADEH, A. (2012b) The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. Journal of Animal and Feed Sciences 21: 725-734.Google Scholar
NINESS, K.R. (1999) Inulin and oligofructose: what are they?. The Journal of Nutrition 129: 1402-1406.Google Scholar
NYS, Y. (2001) Recent developments in layer nutrition for optimising shell quality. Proceedings of 13th European Symposium of Poultry Nutrition. Blankenberg, Belgium, pp. 45-52.Google Scholar
ORTIZ, L.T., RODRÍGUEZ, M.L., ALZUETA, C., REBOLÉ, A. and TREVIÑO, J. (2009) Effect of inulin on growth performance, intestinal tract size, mineral retention, and tibial bone mineralisation in broiler chickens. British Poultry Science 50: 325-332.CrossRefGoogle Scholar
PARK, S.O. and PARK, B.S. (2011) Effect of dietary microencapsulated-inulin on carcass characteristics and growth performance in broiler chickens. Journal of Animal and Veterinary Advances 10: 1342-1349.Google Scholar
PARK, S.O. and PARK, B.S. (2012) Effect of feeding inulin oligosaccharides on cecum bacteria, egg quality and egg production in laying hens. African Journal of Biotechnology 11: 9516-9521.Google Scholar
PRZENIOSŁO-SIWCZYŃSKA, M., CHYŁEK-PURCHAŁA, M. and KWIATEK, K. (2006) Stymulatory wzrostu w żywieniu zwierząt gospodarskich w nowej sytuacji [Growth promoters in livestock animals nutrition under new circumstances]. Pasze przemysłowe 9: 11-13.Google Scholar
REBOLÉ, A., ORTIZ, L.T., RODRÍGUEZ, M.L., ALZUETA, C., TREVIÑO, J. and VELASCO, S. (2010) Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat and barley-based diet. Poultry Science 89: 276-278.Google Scholar
REHMAN, H., HELLWEG, P., TARAS, D. and ZENTEK, J. (2008) Effects of dietary inulin on the intestinal short-chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poultry Science 87: 783-789.Google Scholar
REHMAN, H., ROSENKRANZ, C., BOLEM, J. and ZENTEK, J. (2007) Dietary inulin affects the morphology but not the sodium dependent glucose and glutamine transport in the jejunum of broilers. Poultry Science 86: 118-122.Google Scholar
SAMANTA, A.K., JAYAPAL, N., SENANI, S., KOLTE, A.P. and SRIDHAR, M. (2013) Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora. Brazilian Journal of Microbiology 44: 1-14.CrossRefGoogle ScholarPubMed
ŚWIĄTKIEWICZ, S. and KORELESKI, J. (2007) Dodatki paszowe o działaniu immunomodulacyjnym w żywieniu drobiu [Feed additives enhancing immune responses in poultry]. Medycyna Weterynaryjna 63: 1291-1295.Google Scholar
ŚWIĄTKIEWICZ, S., KORELESKI, J. and ARCZEWSKA, A. (2010a) Laying performance and eggshell quality in laying hens fed diets supplemented with prebiotics and organic acids. Czech Journal of Animal Science 55: 294-306.Google Scholar
ŚWIĄTKIEWICZ, S., KORELESKI, J. and ARCZEWSKA, A. (2010b) Effect of Organic Acids and Prebiotics on Bone Quality in Laying Hens Fed Diets with Two Levels of Calcium and Phosphorus. Acta Veterinaria Brno 79: 185-193.Google Scholar
ŚWIĄTKIEWICZ, S., KORELESKI, J. and ARCZEWSKA-WŁOSEK, A. (2010c) Effect of prebiotic fructans and organic acida on mineral retention in laying hens. Acta Agriculturae Scand SectionA 60: 125-128.Google Scholar
ŚWIĄTKIEWICZ, S., KORELESKI, J. and ARCZEWSKA-WŁOSEK, A. (2011) Effect of inulin and oligofructose on performance and bone characteristics of broiler chickens fed on diets with different concentrations of calcium and phosphorus. British Poultry Science 52: 483-491.Google Scholar
VAN LEEUWEN, P., VERDONK, J.M.A.J., VAN DER KLIS, J.D. and VAN LOO, J. (2006) Inulins (chicory fructans) improve performance of young broilers. EPC 2006- 12th European Poultry Conference, Verona, pp. 246.Google Scholar
VELASCO, S., ORTIZ, L.T., ALZUETA, C., REBOLÉ, A., TREVIÑO, J. and RODRÍGUEZ, M.L. (2010) Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens. Poultry Science 89: 1651-1662.Google Scholar
VERDONK, J.M.A.J., SHIM, S.B., VAN LEEUWEN, P. and VERSTEGEN, M.W.A. (2005) Application of inulin-type fructans in animal feed and pet food. British Journal of Nutrition 93 (Supplement 1): 125-138.Google Scholar
WALDENSTEDT, L. (2006) Nutritional factors of importance for optimal leg health in broilers: A review. Animal Feed Science and Technology 126: 291-307.CrossRefGoogle Scholar
WIERZEJSKA, R. and SZPONAR, L. (2003) Inulina i oligofruktoza jako prozdrowotne składniki żywności [Inulin and oligofructose as a health promoting food supplements]. Bromatologia i Chemia Toksykologiczna XXXVI: 209-212.Google Scholar
YILDIZ, G., SACAKLI, P. and GUNGOR, T. (2006) The effect of dietary Jerusalem artichoke (Helianthus tuberosus L.) on performance, egg quality characteristics and egg cholesterol content in laying hens. Czech Journal of Animal Science 51: 349-354.Google Scholar
YUSRIZAL, and CHEN, T.C. (2003) Effect of Adding Chicory Fructans in Feed on Broiler Growth Performance, Serum Cholesterol and Intestinal Length. International Journal of Poultry Science 2: 214-219.Google Scholar