Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T20:34:08.473Z Has data issue: false hasContentIssue false

Combined immunocytogenetic and molecular cytogenetic analysis of meiosis I oocytes from normal human females

Published online by Cambridge University Press:  15 January 2010

A.L. Barlow
Affiliation:
LSF Research Unit, Regional Genetics Services, Heartlands Hospital, Birmingham, UK
M.A. Hultén*
Affiliation:
LSF Research Unit, Regional Genetics Services, Heartlands Hospital, Birmingham, UK
*
M.A. Hultén, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK. Telephone: +44 (01203) 528976. Fax: +44 (01203) 523701. e-mail: ceht@dna.biol.warwick.ac.uk.

Summary

The microspread oocytes of three fetuses, two of 16 weeks gestation and one of 15 weeks gestation, were labelled with a combination of anti-lateral element antiserum and a human centromere labelling auto-immune serum. The anti-lateral element serum was found to label both asynapsed axial elements and synapsed lateral elements strongly. Nuclei were found from leptotene to diplotene in all three fetuses. The use of the human auto-immune serum led to the observation of ‘staggered centromeres’ and ‘centromeric associations’ as well as tightly clustered centromeres in ‘stellar nuclei’. Nuclei displaying various aberrant features were detected. The use of antibody-labelled microspread oocytes as substrates for fluorescence in situ hybridisation (FISH) was found to be reliably successful only with repetitive (centromeric and telomeric) probes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, T.G. (1963). A quantitative and cytological study of germ cells in human ovaries. Proc. R. Soc. lond. B 15, 417–33.Google Scholar
Baker, T.G. & Franchi, L.L. (1967). The fine structure of oogonia and oocytes in human ovaries, J. Cell Sci. 2, 213–24.CrossRefGoogle ScholarPubMed
Barlow, A.L. & Hultén, M.A. (1996). Combined immuno and molecular cytogenetics of meiosis I human spermatocytes. Chrom. Res. 4, 562–73.CrossRefGoogle Scholar
Barlow, A.L. & Hultén, M.A. (1997). Sequential immunocytogenetics, molecular cytogenetics and transmission electron microscopy of microspread meiosis I oocytes from a human fetal carrier of an unbalanced translocation. Chromosomu 106, 293303.CrossRefGoogle ScholarPubMed
Beaumont, H.M. & Mandl, A.M. (1962). A quantitative and cytological study of oogonia and oocytes in the fetal and neonatal rat. Proc. R. Soc. Loná. B 158, 417–33.Google Scholar
Bojko, M. (1983). Human meiosis. VIII. Chromosome pairing and formation of the synaptonemal complex in oocytes. Carlsberg Res. Commun. 48, 457–83.Google Scholar
Bojko, M. (1985). Human meiosis. IX. Crossover and chiasma formation in oocytes. Carlsberg Res. Commun. 50, 4372.CrossRefGoogle Scholar
Cheng, E. Y. & Gartler, S.M. (1994). A fluorescent in situ hybridisation analysis of X chromosome pairing in early human female meiosis. Hum. Genet. 94, 389–94.CrossRefGoogle ScholarPubMed
Cheng, E.Y., Chen, Y.J. & Gartler, S.M. (1995). Chromosome painting of early oogénesis in human trisomy 18. Cytogenet. Cell Genet. 70, 205–10.CrossRefGoogle ScholarPubMed
Del Mazo, J. & Gil Alberdi, L. (1986). MultiStrand organization of the lateral elements of the synaptonemal complex in the rat and mouse. Cytogenet. Cell Genet. 41, 219–24.CrossRefGoogle ScholarPubMed
Dietrich, A.J., van Marie, J., Heyting, C. & Vink, A.C. (1992). Ultrastructural evidence for a triple structure of the lateral element of the synaptonemal complex, J. Struct. Biol. 109, 109200.CrossRefGoogle ScholarPubMed
Driscoll, D.J., Palmer, CG. & Melman, A. (1979). Nonhomologous associations of C-heterochromatin at human male meiotic prophase. Cytogenet. Cell Genet. 23, 2332.CrossRefGoogle Scholar
Earnshaw, W.C. & Rothfield, N.F. (1985). Identification of a family of human centromere proteins using an autoimmune sera from patients with scleroderma. Chromosoma 91, 313–21.CrossRefGoogle ScholarPubMed
Gabriel-Robez, O., Ratomponirina, C., Croquette, M., Couturier, J. & Rumpier, Y. (1988). Synaptonemal complexes in a subfertile man with a pericentric inversion in chromosome 21. Heterosynapsis without previous homosynapsis. Cytogenet. Cell Genet. 48, 84–7.CrossRefGoogle Scholar
Garcia, M., Dietrich, A.J.J., Frexia, L., Vink, A.C.G., Ponsà, M. & Egozcue, J. (1987). Development of the first meiotic prophase stages in human foetal oocytes observed by light and electron microscopy. Hum. Genet. 77, 223–32.CrossRefGoogle ScholarPubMed
Heng, H.Q., Tsui, L.C. & Moens, P.B. (1994). Organization of heterologous DNA inserts on the mouse meiotic chromosome core. Chromosoma 103, 401–7.CrossRefGoogle ScholarPubMed
Heng, H.Q., Chamberlain, J.W., Shi, X.M., Spyropoulos, B., Tsui, L.C. & Moens, P.B. (1996). Regulation of chromatin loop size by chromosomal position. Proc. Natl. Acad. Sci. USA 93, 2795–800.CrossRefGoogle ScholarPubMed
Heyting, C. (1996). Synaptonemal complexes: structure and function. Curr. Opin. Cell Biol. 8, 389–96.CrossRefGoogle ScholarPubMed
Heyting, C., Dietrich, A.J.J., Rederer, E.J.W. & Vink, A.C.G. (1985). Structure and composition of the synaptonemal complexes of isolated from rat spermatocytes: Eur. J. Cell Biol. 36, 307–14.Google ScholarPubMed
Holm, P.B. & Rasmussen, S.W. (1977). Human meiosis. I. The human pachytene karyotype analyzed by three-dimensional reconstruction of the synaptonemal complex. Carlsberg Res. Commun. 42, 283323.CrossRefGoogle Scholar
Hultén, M., Luciani, J.M., Kirton, V. & Devictor-Vuillet, M. (1978). The use and limitations of chiasma scoring with reference to human genetic mapping. Cytogenet. Cell Genet. 22, 3758.CrossRefGoogle ScholarPubMed
Hultén, M.A., Goldman, A.S.H., Saadallah, N., Wallace, B.M.N. & Creasy, M.R. (1992). Meiotic studies in man. In Human Cytogenetics: A Practical Approach, ed. Rooney, D.E. & Czepulkowski, B.H., pp. 193221. Oxford: IR'L Press.Google Scholar
Jacobson, D.M., Weil, M. & Raff, M.C. (1997). Programmed cell death in animal development. Cell 88, 347–54.CrossRefGoogle ScholarPubMed
Jones, G.H. & Albini, S.M. (1988). Meiotic roles of nodule structures in zygotene and pachytene nuclei of angiosperms. In Kew Chromosome Conference III, ed. Brandham, P.E., pp. 323–30. London: HMSO.Google Scholar
Kurilo, L.F. (1981). Oogénesis in antenatal development in man. Hum. Genet. 57, 8692.CrossRefGoogle ScholarPubMed
Lammers, J.H.M., Offenberg, H.H., van Aalderen, M., Vink, A.C.G., Dietrich, A.J.J. & Heyting, C. (1994). The gene encoding a major component of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol. Cell Biol. 14, 1137–16.Google Scholar
Loidl, J. (1994). Cytological aspects of meiotic recombination. Experientia 50, 285–94.CrossRefGoogle ScholarPubMed
Mazo, J. del & Gil Alberdi, L. (1986). Multistrarid organization of the lateral elements of the synaptonemal complex in the rat and mouse. Cytogenet. Cell Genet. 41, 219–24.CrossRefGoogle ScholarPubMed
Moens, P.B. & Pearman, R.E. (1988). Chromatin organization at meiosis. Bioessays 9, 151–3.CrossRefGoogle ScholarPubMed
Moens, P.B. & Pearlman, R.E. (1990). Telomere and centromere DNA are associated with the cores of meiotic prophase chromosomes. Chromosoma 100, 814.CrossRefGoogle ScholarPubMed
Moens, P.B. & Spyropoulos, B. (1995). Immunpcytology of chiasmata and chromosomal disjunction at mouse meiosis. Chromosoma 104, 175–82.CrossRefGoogle ScholarPubMed
Moses, M.J. (1977). Microspreading and the synaptonemal complex in cytogenetic studies. Chromosomes Today 6, 7182.Google Scholar
Moses, M.J. & Poorman, P.A. (1981). Synaptonemal complex analysis of mouse chromosomal rearrangements. Chromosoma 81, 519–35.CrossRefGoogle ScholarPubMed
Saadallah, N. & Hultén, M. (1986). EM investigations of surface spread synaptonemal complexes in a human male carrier of a pericentric inversion inv(13)(p12q14): the role of heterosynapsis for spermatocyte survival. Ann. Hum. Genet. 50, 369–83.CrossRefGoogle Scholar
Scherthan, H., Weich, S., Schwegler, H., Heyting, C., Härle, M. & Cremer, T. (1996). Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J. Cell Biol. 134, 1109–25.CrossRefGoogle ScholarPubMed
Schmid, M., Vogel, W. & Krone, W. (1975). Attraction between centric heterochromatin of human chromosomes. Cytogenet. Cell Genet. 15, 6680.CrossRefGoogle ScholarPubMed
Solari, A.J. (1980). Synaptonemal complexes and associated structures in microspread human spermatocytes. Chromosomu 81, 315–37.CrossRefGoogle ScholarPubMed
Speed, R.M. (1985). The prophase stages in human foetal oocytes studied by light and electron microscopy. Hum. Genet. 69, 6975.CrossRefGoogle ScholarPubMed
Speed, R.M. (1988). The possible role of meiotic pairing anomalies in the atresia of human foetal oocytes. Hum. Genet. 78, 260–6.CrossRefGoogle Scholar
Speed, R.M. & Chandley, A.C. (1990). Prophase of meiosis in human spermatocytes analysed by EM microspreading in infertile men and their controls and comparisons with human oocytes. Hum. Genet. 84, 547–54.CrossRefGoogle ScholarPubMed
Stahl, A. & Luciani, J.M. (1972). Nucleoli and chromosomes: their relationships during the meiotic prophase of the human fetal oocyte. Humangenetik 00, 269–84.Google Scholar
Therman, E. & Sarto, G.E. (1977). Premeiotic and early meiotic stages in the pollen mother cells of Eremurus and in human embryonic oocytes. Hum. Genet. 35, 137–51.CrossRefGoogle ScholarPubMed
Wallace, B.M.N. & Hultén, M.A. (1983). Triple synapsis in oocytes from a human foetus with trisomy 21. Ann. Hum. Genet. 47, 271–6.CrossRefGoogle ScholarPubMed
Wallace, B.M.N. & Hultén, M.A. (1985). Meiotic chromosome pairing in the normal human female. Ann. Hum. Genet. 49, 215–26.CrossRefGoogle ScholarPubMed
Walters, M.S. (1970). Evidence on the time of chromosome pairing from the preleptotene spiral stage in Lilium longiforum ‘Croft’. Chromosoma 29, 375418.CrossRefGoogle Scholar
Westergaard, M. & Von Wettstein, D. (1972). The synaptonemal complex. Annu. Rev. Genet. 6, 71110.CrossRefGoogle Scholar