Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T06:28:56.790Z Has data issue: false hasContentIssue false

Assessment of the acrosome reastion in Bufo arenarum Spermatozoa by immunostaining: comparison with other methods

Published online by Cambridge University Press:  26 September 2008

María Laura Martínez
Affiliation:
Area Biología, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioqui'micas y Farmacéuticas (UNR), and PROMUBIE (CONICET), Suipacha 531, (2000) Rosario, Argentina.
Marcelo O. Cabada*
Affiliation:
Area Biología, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioqui'micas y Farmacéuticas (UNR), and PROMUBIE (CONICET), Suipacha 531, (2000) Rosario, Argentina.
*
Dr Marcelo O. Cabada, Area Biología, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), and PROMUBIE (CONICET), Suipacha 531, (2000) Rosario, Argentina. Telephone and fax: 0054-41-255277.

Summary

The acrosome reaction in Bufo arenarum spermatozoa has been visualised only by electron microscopy. Different staining procedures for spermatozoa are described in the present study. By light microscopy the acorsomal status cannot be determined, In some reacted sperm, stained with Coomassie blue, a filament that could be the ‘perforatorium’ was observed, as seen by electron microscopy. Several fluorescent lectins were used, but only FITC-PNA binds to acrosomal proteins. However, the fluorescence observed was weak. Indirect immunofluorescence, with antibodies raised against acrosomal matrix, showed different staining patterns between acrosome-reacted and intact spermatozoa. The technique is specific for evaluating acrosomal status in a large population of spermatozoa. Moreover, immunostaining, in contrast with lectin staining, can be carried out in the presence of glycoconjugates such as oocyte extracellular matrix without interference.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barros, C., Bedford, J.M., Franklin, L.E. & Austin, C.R. (1967). Membrane vesiculation as a feature of the mammalian acrosome reaction. j. Cell Biol. 34, C12.CrossRefGoogle ScholarPubMed
Burgos, M.H. & Fawcett, D.W. (1956). An electron microscope study of spermatid differentiation in the toad, Bufo arenarum Hensel. J. Biophys. Biochem. Cytol. 2, 223–40.CrossRefGoogle ScholarPubMed
Bryan, J.H.D. & Akruk, S.R. (1977). A naphthol yellow S and erythrosin B staining procedure for use in studies of the acrosome reaction of rabbit spermatozoa. Stain Technol. 52, 4751.CrossRefGoogle ScholarPubMed
Cabada, M.O., Mariano, M.I. & Raisman, J.S. (1978). Effect of trypsin inhibitors and concanavalin A on the fertilization of Bufo arenarum coelomic ooctes. J. Exp. Zool. 204, 409–16.CrossRefGoogle Scholar
Cabada, M.O., Manes, M.E. & Gomez, M.I. (1989). Spermatolysins in bufo arenarum: their activity on occcyte's surface. J. Exp. Zool. 249, 229–34.CrossRefGoogle ScholarPubMed
Cross, N.L. & Meizel, S. (1989). Methods for evaluating the acrosomal status of mammalian sperm. Biol. Reprod. 41, 635–41.CrossRefGoogle ScholarPubMed
Cross, N.L., Morales, P., Overstreet, J.W.Hanson, F.W. (1986). Two simple methods for detecting acrosomereacted human sperm. Gamete Res. 15, 213–26.CrossRefGoogle Scholar
Diaz Fontzdevila, M.F., Bloj, B. & Cabada, M.O. (1988). Effect of cholesterol and phosphatidylcholine of different chain length on acrosome breakdown and fertilizing capacity of amphibian spermatozoa. Gamete Res. 21, 5970.CrossRefGoogle Scholar
Didion, B.A., Dobrinsky, J.R., Giles, J.R. & Graves, C.N. (1989). Staining procedure to detect viability and the true acrosome reaction in spermatozoa of various species. Gamete Res. 22, 51–7.CrossRefGoogle ScholarPubMed
Duellman, W.E. & Trueb, L. (1986). Reproductive strategies. In Biology of Amphibians, pp. 1328. New York: McGrawHill.Google Scholar
Fink, E.N., Elola, M.T. & Cabada, M.O. (1992). Interaction of ovary lactin with homologous sperm from Bufo arenarum. Reprod. Fertil Dev. 4, 559–64.CrossRefGoogle Scholar
Fukumoto, M. (1990). The acrosome reaction in Ciona intestinalis (Ascidia Tunicata). Dev. Growth Differ. 32, 51–5.CrossRefGoogle ScholarPubMed
Harlow, E. & Lane, D. (1988 a). Immunizations. In Antibodies: A Laboratory Manual., pp. 100–5.New York: Cold Spring Harbour Laboratory.Google Scholar
Harlow, E. & Lane, D. (1988 b). Immunoblotting. In Antibodies: A Laboratory Manual, pp. 497509. New York: Cold Spring harbor Laboratory.Google Scholar
Hawkes, R. (1986). The dot immunobinding assay. Methods Enzymol. 1221, 484–91.CrossRefGoogle Scholar
Johnson, D.A., Gautsch, J.W., Sportsman, J.R. & Elder, J.H. (1984). Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal. Tech. 1, 38.CrossRefGoogle Scholar
Kawakami, E., Vandevoort, C.A., Mahi-Brown, C.A., Tollner, T.L. & Overstreet, J.W. (1993). Comparison of a fluoresceinated lectin stain with triple staining for evaluating acrosome reaction of dog sperm. J. Exp. Zool. 265, 599603.CrossRefGoogle Scholar
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–5.CrossRefGoogle ScholarPubMed
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–75.CrossRefGoogle ScholarPubMed
Mazia, D., Schatten, G. & Sale, W. (1975). Adhesion of cells to surfaces coated with polylysine. J. Cell Biol. 66, 198200.CrossRefGoogle ScholarPubMed
Meizel, S. (1984). The importance of hydrolytic enzymes to an exocytotic event, the mammalian sperm acrosome reaction. Biol. Rev. 59, 125–57.CrossRefGoogle Scholar
Moller, C.C., Bleil, J.D., Kinloch, R.A. & Wassarman, P.M. (1990). Structural and functional relationships between mouse and hamster zona pellucida glycoproteins. Dev. Biol. 137, 276–86.CrossRefGoogle ScholarPubMed
Moore, H.D.M., Smith, C.A., Hartman, T.D. & Bye, A.P. (1987). Visualization and characteriztion of the acrosome reaction of human spermatozoa by immunolocalization with monoclonal antibody. Gamete Res. 17, 245–59.CrossRefGoogle Scholar
Mortimer, D., Curtis, E.F. & Miller, R.G. (1987). Specific labeling by peanut agglutinin of the outer acrosomal membrane of the human spermatozoon. J. Reprod. Fertil. 81, 127–35.CrossRefGoogle ScholarPubMed
Perotti, M.E. & Passini, M.E. (1995). Glycoconjugates of the surface of the spermatozoa of Drosophila melanogaster: a qualitative and quantitative study. J. Exp. Zool. 271, 311–18.CrossRefGoogle Scholar
Raisman, J.S., de Cunio, R.W., Cabada, M.O., del Pino, E.J. & Mariano, M.I. (1980). Acrosome breakdown in Leptodac–tilus chaquensis (Amphibia, Anura) spermatozoa. Dev. Growth Differ. 22, 289–97.CrossRefGoogle ScholarPubMed
Richardson, M.E., Bodine, A.B., Froman, D.P. & Thurston, R.J. (1988). Turky acrosin: isolation, purification and partial characterization. Biol. Reprod. 38, 645–51.CrossRefGoogle Scholar
Rudnicki, M.A. & McBurney, M.W. (1987). Cell culture methods and induction of differentiation of embryonal carcinoma cell lines. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, ed. Robertson, E.J., pp. 1549. Oxford: IRL Press.Google Scholar
Sanchez, R., Topfer-Petersen, E., Aitken, R.J. & Schill, W.B. (1991). A new method for evaluation of the acrosome reaction in viable human spermatozoa. Andrologia. 23, 197203.CrossRefGoogle ScholarPubMed
Takamune, K. (1987). Detection of acrosome-reacted toad sperm based on specific lectin binding to the inner acrosomal membrane. Gamete Res. 18, 215–23.CrossRefGoogle Scholar
Talbot, P. & Chacon, R.S. (1981). A triple-stain technique for evaluating normal acrosome reactions of human sperm J. Exp. Zool. 215. 201–8.CrossRefGoogle ScholarPubMed
Tesarik, J., Drahorad, J., Testart, J. & Mendoza, C. (1990). Acrosin activation follows its surface exposure and precedes membrane fusion in human sperm acrosome reaction. Development. 110 391400.CrossRefGoogle ScholarPubMed
Valz-Gianinet, J.N., del Pino, E.J. & Cabada, M.O. (1991). Glycoproteins from Bufo arenarum vitelline envelope with fertility-impairing effect on homologous spermatozoa. Dev. Biol. 146, 146–22.CrossRefGoogle ScholarPubMed
Wells, M.E. & Awa, O.A. (1970). New technique for assessing acrosomal characteristics of spermatozoa. J. Dairy Sci. 53, 227–32.CrossRefGoogle ScholarPubMed
Yamada, Y. & Aketa, K. (1981). Vitelline layer lytic activity in sperm extracts of sea urchin, Hemicentrotus pulcherrimus. Gamete Res. 4, 193202.CrossRefGoogle Scholar
Yamasaki, H., Takamune, K. & Katagiri, C. (1988). Classification, inhibition, and specificity studies of the vitelline coat lysin from toad sperm. Gamete Res. 20, 287300.CrossRefGoogle ScholarPubMed
Yanagimachi, R. (1994). Mammalian fertilization. In The Physiology of Reproduction, ed. Knobil, E. & Neill, J.D., vol. 1, pp. 206–18. New York: Raven Press.Google Scholar
Yanagimachi, R. & Usui, N. (1974). Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp. Cell Res. 89, 161–74.CrossRefGoogle ScholarPubMed
Yudin, A.I., Gottlieb, W. & Meizel, S. (1988). Ultrastructural studies of the early events of the human sperm acrosome reaction as initiated by human follicular fluid. Gamete Res. 20, 1124.CrossRefGoogle ScholarPubMed