Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T21:42:27.059Z Has data issue: false hasContentIssue false

Discussions About COVID-19 Vaccination on Twitter in Turkey: Sentiment Analysis

Published online by Cambridge University Press:  13 October 2022

Gülengül Mermer
Affiliation:
Ege Universitesi, Department of Public Health Nursing, Department of Public Health Nursing, İzmir, Turkey
Gözde Özsezer*
Affiliation:
Ege Universitesi, Department of Public Health Nursing, Department of Public Health Nursing, İzmir, Turkey
*
Corresponding author: Gözde Özsezer, Email: gozdeozsezer@hotmail.com.

Abstract

Objectives:

The present study aims to examine coronavirus disease 2019 (COVID-19) vaccination discussions on Twitter in Turkey and conduct sentiment analysis.

Methods:

The current study performed sentiment analysis of Twitter data with the artificial intelligence (AI) Natural Language Processing (NLP) method. The tweets were retrieved retrospectively from March 10, 2020, when the first COVID-19 case was seen in Turkey, to April 18, 2022. A total of 10,308 tweets accessed. The data were filtered before analysis due to excessive noise. First, the text is tokenized. Many steps were applied in normalizing texts. Tweets about the COVID-19 vaccines were classified according to basic emotion categories using sentiment analysis. The resulting dataset was used for training and testing ML (ML) classifiers.

Results:

It was determined that 7.50% of the tweeters had positive, 0.59% negative, and 91.91% neutral opinions about the COVID-19 vaccination. When the accuracy values of the ML algorithms used in this study were examined, it was seen that the XGBoost (XGB) algorithm had higher scores.

Conclusions:

Three of 4 tweets consist of negative and neutral emotions. The responsibility of professional chambers and the public is essential in transforming these neutral and negative feelings into positive ones.

Type
Original Research
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McMullan, LK. Clinical trials in an Ebola outbreak seek to find an evidence-based cure. EBioMedicine.2020;52:102614. doi: 10.1016/j.ebiom.2019.102614 CrossRefGoogle Scholar
Zhang, Y, Ma, ZF. Impact of the COVID-19 pandemic on mental health and quality of life among local residents in Liaoning Province, China: a cross-sectional study. Int J Environ Res Public Health. 2020;17(7):2381. doi: 10.3390/ijerph17072381 Google ScholarPubMed
Rothan, HA, Byrareddy, SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433 CrossRefGoogle ScholarPubMed
WHO. Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. Published February 11, 2020. Accessed July 16, 2021. https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 Google Scholar
Dutta, S, Smita, MK. The impact of COVID-19 pandemic on tertiary education in Bangladesh: students’ perspectives. Open J Soc Sci. 2020;8(9):53. doi: 10.4236/jss.2020.89004 Google Scholar
Le, TT, Cramer, JP, Chen, R, et al. Evolution of the COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(10):667-668. doi: 10.1038/d41573-020-00151-8 CrossRefGoogle ScholarPubMed
Li, Y, Tenchov, R, Smoot, J, et al. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent Sci. 2021;7(4):512-533. doi: 10.1021/acscentsci.1c00120 CrossRefGoogle ScholarPubMed
Appel, G, Grewal, L, Hadi, R, et al. The future of social media in marketing. J Acad Mark Sci. 2020;48(1):79-95. doi: 10.1007/s11747-019-00695-1 CrossRefGoogle ScholarPubMed
Gölbaşı, SD, Metintas, S. Covid-19 pandemic and infodemia. ESTÜDAM Halk Sağlığı Dergisi, 5(COVID-19 Özel Sayısı). 2020;5:126-137. doi: 10.35232/estudamhsd.797508 Google Scholar
Bernard, R, Bowsher, G, Sullivan, R, et al. Disinformation and epidemics: anticipating the next phase of biowarfare. Health Secur. 2021;19(1):3-12. doi: 10.1089/hs.2020.0038 CrossRefGoogle ScholarPubMed
Berkovic, D, Ackerman, IN, Briggs, AM, et al. Tweets by people with arthritis during the COVID-19 pandemic: content and sentiment analysis. J Med Internet Res. 2020;22(12):e24550. doi: 10.2196/24550 CrossRefGoogle ScholarPubMed
Cerbara, L, Ciancimino, G, Crescimbene, M, et al. A nation-wide survey on emotional and psychological impacts of COVID-19 social distancing. Eur Rev Med Pharmacol Sci. 2020;24(12):7155-7163. doi: 10.26355/eurrev_202006_21711 Google ScholarPubMed
Chen, Q, Min, C, Zhang, W, et al. Unpacking the black box: how to promote citizen engagement through government social media during the COVID-19 crisis. Comput Human Behav. 2020;110:106380. doi: 10.1016/j.chb.2020.106380 Google ScholarPubMed
Lyu, JC, Han, EL, Luli, GK. COVID-19 vaccine-related discussion on Twitter: topic modeling and sentiment analysis. J Med Internet Res. 2021;23(6):e24435. doi: 10.2196/24435 CrossRefGoogle ScholarPubMed
Restubog, SLD, Ocampo, ACG, Wang, L. Taking control amidst the chaos: emotion regulation during the COVID-19 pandemic. J Vocat Behav. 2020;119:103440. doi: 10.1016/j.jvb.2020.103440 CrossRefGoogle ScholarPubMed
Ball, P. Anti-vaccine movement could undermine efforts to end coronavirus pandemic, researchers warn. Nature. 2020;13:581(7808):251-251.CrossRefGoogle Scholar
Abbasi, J. COVID-19 conspiracies and beyond: how physicians can deal with patients’ misinformation. JAMA. 2021;325(3):208-210. doi: 10.1001/jama.2020.22018 Google ScholarPubMed
Alamoodi, AH, Zaidan, BB, Zaidan, AA, et al. Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: a systematic review. Expert Syst Appl. 2021;167:114155. doi: 10.1016/j.eswa.2020.114155 CrossRefGoogle ScholarPubMed
Singh, R, Singh, R, Bhatia, A. Sentiment analysis using ML technique to predict outbreaks and epidemics. Int J Adv Sci Res. 2018;3(2):19-24. http://www.allsciencejournal.com/archives/2018/vol3/issue2/3-2-15 Google Scholar
DATAREPORTAL. Digital 2020: global digital overview. Accessed February 17, 2022. https://datareportal.com/reports/digital-2020-global-digital-overview Google Scholar
Wikipedia. List of Twitter accounts with the most followers (Turkey). Accessed February 17, 2022. https://tr.wikipedia.org/wiki/En_çok_takipçisi_olan_Twitter_hesapları_listesi_(Türkiye) Google Scholar
Mathur, A, Kubde, P, Vaidya, S. Emotional analysis using Twitter data during pandemic situation: COVID-19. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) IEEE. 2020;845-848. doi: 10.1109/ICCES48766.2020.9138079 CrossRefGoogle Scholar
Bonnevie, E, Gallegos-Jeffrey, A, Goldbarg, J, et al. Quantifying the rise of vaccine opposition on Twitter during the COVID-19 pandemic. J Commun Healthc. 2021;14(1):12-19. doi: 10.1080/17538068.2020.1858222 CrossRefGoogle Scholar
Hussain, A, Tahir, A, Hussain, Z, et al. Artificial intelligence-enabled analysis of public attitudes on Facebook and Twitter toward Covid-19 vaccines in the United Kingdom and the United States: observational study. J Med Internet Res. 2021;23(4):e26627. doi: 10.2196/26627 Google ScholarPubMed
Abualigah, L, Alfar, HE, Shehab, M, et al. Sentiment analysis in healthcare: a brief review. In: Recent Advances in NLP: The Case of Arabic Language. Springer: 2020;29-141. doi: 10.1007/978-3-030-34614-0_7 Google Scholar
Agustiningsih, KK, Utami, E, Al Fatta, H. Sentiment analysis of COVID-19 vaccine on Twitter social media: systematic literature review. In: 2021 IEEE 5th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE) IEEE. 2021;121-126. doi: 10.1109/ICITISEE53823.2021.9655960 CrossRefGoogle Scholar
Demircan, M, Seller, A, Abut, F, et al. Developing Turkish sentiment analysis models using ML and e-commerce data. Int J Cogn Comput Eng. 2021;2:202-207. doi: 10.1016/j.ijcce.2021.11.003 Google Scholar
Kemaloğlu, N, Küçüksille, E, Özgünsür, M. Turkish sentiment analysis on social media. Sakarya Univ J Sci. 2021;25(3):629-638. doi: 10.16984/saufenbilder.872227 CrossRefGoogle Scholar
Shehu, HA, Tokat, S, Sharif, MH, et al. Sentiment analysis of Turkish Twitter data. In: AIP Conference Proceedings. 2019;2183(1):080004. doi: 10.1063/1.5136197 CrossRefGoogle Scholar
Rumelli, M, Akkuş, D, Kart, Ö, et al. Sentiment analysis in Turkish text with ML algorithms. In 2019 Innovations in Intelligent Systems and Applications Conference (ASYU) IEEE. 2019;1-5. doi: 10.1109/ASYU48272.2019.8946436 CrossRefGoogle Scholar
Gezici, G, Yanıkoğlu, B. Sentiment analysis in Turkish. In: Turkish Natural Language Processing. Springer, Cham. 2018;255-271. doi: 10.1007/978-3-319-90165-7_12 CrossRefGoogle Scholar
Balli, C, Guzel, MS, Bostanci, E, et al. Sentimental analysis of Twitter users from Turkish content with natural language processing. Comput Intell Neurosci. 2022. doi: 10.1155/2022/2455160 CrossRefGoogle ScholarPubMed
Voyant Tools. Accessed April 20, 2022. https://voyant-tools.org Google Scholar
World Health Organization. The world health report 2007 - a safer future: global public health security in the 21st century. Accessed February 17, 2022. https://www.who.int/whr/2007/en/ Google Scholar
Neiger, BL, Thackeray, R, Burton, SH, et al. Evaluating social media’s capacity to develop engaged audiences in health promotion settings: use of Twitter metrics as a case study. Health Promot Pract. 2013;14(2):157-162. doi: 10.1177/1524839912469378 CrossRefGoogle ScholarPubMed
Conway, M, Hu, M, Chapman, WW. Recent advances in using natural language processing to address public health research questions using social media and consumergenerated data. Yearb Med Inform. 2019;28(1):208. doi: 10.1055/s-0039-1677918 Google ScholarPubMed
Edo-Osagie, O, De La Iglesia, B, Lake, I, et al. A scoping review of the use of Twitter for public health research. Comput Biol Med. 2020;122:103770. doi: 10.1016/j.compbiomed.2020.103770 Google ScholarPubMed
Tavoschi, L, Quattrone, F, D’Andrea, E, et al. Twitter as a sentinel tool to monitor public opinion on vaccination: an opinion mining analysis from September 2016 to August 2017 in Italy. Hum Vaccin Immunother. 2020;16(5):1062-1069. doi: 10.1080/21645515.2020.1714311 CrossRefGoogle ScholarPubMed
Niu, Q, Liu, J, Nagai-Tanima, M, et al. Public opinion and sentiment before and at the beginning of COVID-19 vaccinations in Japan: Twitter analysis. medRxiv. 2021. doi: 10.1101/2021.07.19.21260735 CrossRefGoogle Scholar
Çankal, G. Self-Orientalist discussions about Turkovac Vaccine in social media. J Media Relig Stud. 2021;4(2):223-235. doi: 10.47951/mediad.1021243 Google Scholar
Greyling, T, Rossouw, S. Positive attitudes towards COVID-19 vaccines: a cross-country analysis. PLoS One. 2022;17(3):e0264994. doi: 10.1371/journal.pone.0264994 CrossRefGoogle ScholarPubMed
Na, T, Cheng, W, Li, D, et al. Insight from NLP analysis: COVID-19 vaccines sentiments on social media. arXiv. 2021;2106.04081. doi: 10.48550/arXiv.2106.04081 CrossRefGoogle Scholar
Pristiyono, Ritonga M, Al Ihsan, MA, et al. Sentiment analysis of COVID-19 vaccine in Indonesia using Naïve Bayes Algorithm. In: IOP Conference Series: Materials Science and Engineering. 2021;1088(1):012045. doi: 10.1088/1757-899X/1088/1/012045 CrossRefGoogle Scholar
Kwok, SWH, Vadde, SK, Wang, G. Tweet topics and sentiments relating to COVID-19 vaccination among Australian Twitter users: ML analysis. J Med Internet Res. 2021;23(5):e26953. doi: 10.2196/26953 CrossRefGoogle Scholar
Griffith, J, Marani, H, Monkman, H. COVID-19 vaccine hesitancy in Canada: content analysis of Tweets using the theoretical domains framework. J Med Internet Res. 2021;23(4):e26874. doi: 10.2196/26874 CrossRefGoogle ScholarPubMed
Shim, JG, Ryu, KH, Lee, SH, et al. Text mining approaches to analyze public sentiment changes regarding COVID-19 vaccines on social media in Korea. Int J Environ Res Public Health. 2021;18(12):6549. doi: 10.3390/ijerph18126549 CrossRefGoogle ScholarPubMed
Sharma, S, Sharma, A. Twitter sentiment analysis during unlock period of COVID-19. In: 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). IEEE. 2020;221-224. doi: 10.1109/PDGC50313.2020.9315773 CrossRefGoogle Scholar
Nezhad, ZB, Deihimi, MA. Twitter sentiment analysis from Iran about COVID 19 vaccine. Diabetes Metab Syndr. 2022;16(1):102367. doi: 10.1016/j.dsx.2021.102367 CrossRefGoogle Scholar
Reshi, AA, Rustam, F, Aljedaani, W, et al. COVID-19 vaccination-related sentiments analysis: a case study using worldwide Twitter dataset. Healthcare. 2022;10(3):411. doi: 10.3390/healthcare10030411 CrossRefGoogle ScholarPubMed
Paul, N, Gokhale, SS. Analysis and Classification of vaccine dialogue in the Coronavirus era. In: 2020 IEEE International Conference on Big Data (Big Data) IEEE. 2020;3220-3227. doi: 10.1109/BigData50022.2020.9377888 CrossRefGoogle Scholar
Nurdeni, DA, Budi, I, Santoso, AB. Sentiment analysis on Covid19 vaccines in Indonesia: from the perspective of Sinovac and Pfizer. In: 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT) IEEE. 2021;122-127. doi: 10.1109/EIConCIT50028.2021.9431852 CrossRefGoogle Scholar
Villavicencio, C, Macrohon, JJ, Inbaraj, XA, et al. Twitter sentiment analysis towards Covid-19 vaccines in the Philippines using naïve bayes. Information. 2021;12(5):204. doi: 10.3390/info12050204 CrossRefGoogle Scholar
To, QG, To, KG, Huynh, VAN, et al. Applying ML to identify anti-vaccination tweets during the COVID-19 pandemic. Int J Environ Res Public Health. 2021;18(8):4069. doi: 10.3390/ijerph18084069 CrossRefGoogle ScholarPubMed
Marcec, R, Likic, R. Using Twitter for sentiment analysis towards AstraZeneca/Oxford, Pfizer/BioNTech and Moderna COVID-19 vaccines. Postgrad Med J. 2022;98(1161):544-550. doi: 10.1136/postgradmedj-2021-140685 CrossRefGoogle ScholarPubMed
Rahul, K, Jindal, BR, Singh, K, et al. Analysing public sentiments regarding COVID-19 vaccine on Twitter. In: 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS) IEEE. 2021;488-493. doi: 10.1109/ICACCS51430.2021.9441693 CrossRefGoogle Scholar
Scannell, D, Desens, L, Guadagno, M, et al. COVID-19 vaccine discourse on Twitter: a content analysis of persuasion techniques, sentiment and mis/disinformation. J Health Commun. 2021;26(7)443-459. doi: 10.1080/10810730.2021.1955050 CrossRefGoogle ScholarPubMed
Papadopoulos, A, Sargeant, JM, Majowicz, SE, et al. Enhancing public trust in the food safety regulatory system. Health Policy. 2012;107(1):98-103. doi: 10.1016/j.healthpol.2012.05.010 CrossRefGoogle ScholarPubMed