Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T22:51:34.576Z Has data issue: false hasContentIssue false

Interrelation of radiocarbon ages from bone fractions in the Brazilian Intertropical Region

Published online by Cambridge University Press:  17 May 2023

Mário André Trindade Dantas*
Affiliation:
Laboratório de Ecologia e Geociências, Universidade Federal da Bahia (UFBA/IMS/CAT), Vitória da Conquista, Bahia cep 45029-094, Brazil
Alexander Cherkinsky
Affiliation:
Center for Applied Isotope Studies, University of Georgia, Athens, Athens, Georgia 30602, USA
*
*Corresponding author at: Laboratório de Ecologia e Geociências, Universidade Federal da Bahia (UFBA/IMS-CAT), Vitória da Conquista, Bahia cep 45029-094, Brazil. E-mail address: matdantas@yahoo.com.br (M.A.T. Dantas).

Abstract

There is a consensus in the literature that radiocarbon dating performed on bioapatite often produces ages younger than dating performed on collagen. We propose a general regression that could be used to convert the bioapatite radiocarbon ages to the simulated ages on collagen in fossil samples worldwide. This general regression presents several good indices of quality, high correlation (R2 = 0.98), lower values of percent predicted error (%PE = 0.01), and standard error of the estimate (%SEE = 21.83), showing that it is a good tool, as the predicted values are similar to those observed. Using this regression, we converted the radiocarbon ages of bioapatite to the expected age from the collagen fraction made for several taxa from the Brazilian Intertropical Region (BIR) and suggest that these dates could be 1–7 cal ka BP older than previously thought.

Type
Contributions to the QR Forum
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnosky, A.D., Lindsey, E.L., 2010. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International 217, 1029.CrossRefGoogle Scholar
Cartelle, C., 1999. Pleistocene mammals of the Cerrado and Caatinga of Brazil. Mammals of the Neotropics 3, 2746.Google Scholar
Cherkinsky, A., 2009. Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51, 647655.CrossRefGoogle Scholar
Cherkinsky, A., Dantas, M.A.T., Cozzuol, M.A., 2013. Bioapatite 14C age of giant mammals from Brazil. Radiocarbon 55, 464471.CrossRefGoogle Scholar
Cherkinsky, A., Glassburn, C.L., Reuther, J., 2015. Preservation of collagen and bioapatite fractions extracted from bison teeth in permafrost conditions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361, 392396.CrossRefGoogle Scholar
Cook, C.T., Van der Plicht, J., 2007. Radiocarbon dating: conventional method. Encyclopedia of Quaternary Science 2007, 28992911.Google Scholar
Dantas, M.A.T., Cherkinsky, A., Bocherens, H., Drefahl, M., Bernardes, C., França, L.M., 2017. Isotopic paleoecology of the Pleistocene megamammals from the Brazilian Intertropical Region: feeding ecology (δ13C), niche breadth and overlap. Quaternary Science Reviews 170, 152163.CrossRefGoogle Scholar
Dantas, M.A.T., Liparini, A., Asevedo, L., França, L.M., Cherkinsky, A., 2022. Annual isotopic diet (δ13C, δ18O) of Notiomastodon platensis (Ameghino, 1888) from Brazilian Intertropical Region. Quaternary International 610, 3843.CrossRefGoogle Scholar
Dantas, M.A.T., Missagia, R.V., Dutra, R.P., Raugust, T., Silva, L.A., Delicio, M.P., Reno, R., Cherkinsky, A., 2020. Isotopic paleoecology (δ13C) from mammals from IUIU/BA and paleoenvironmental reconstruction (δ13C, δ18O) for the Brazilian intertropical region through the late Pleistocene. Quaternary Science Reviews 242, 106469.CrossRefGoogle Scholar
Delson, E., Terranova, C.J., Jungers, W.L., Sargis, E.J., Jablonski, N.G., 2000. Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Anthropological Papers of the AMNH 83.Google Scholar
Greco, M.C., Dantas, M.A.T., Cozzuol, M., 2022. A new species of small Camelidae from the Late Pleistocene of Brazil. Journal of Quaternary Science 37, 12611269.CrossRefGoogle Scholar
Halenar, L.B., 2011. Reconstructing the locomotor repertoire of Protopithecus brasiliensis. I. Body size. Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 294, 20242047.CrossRefGoogle ScholarPubMed
Hammer, Ø., Harper, D.A., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9.Google Scholar
Harper, W.V., 2016. Reduced major axis regression. In: Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat07912.Google Scholar
Hedges, R.E., 2002. Bone diagenesis: an overview of processes. Archaeometry 44, 319328.CrossRefGoogle Scholar
Hogg, A.G., Heaton, T.J., Hua, Q., Palmer, J.G., Turney, C.S., Southon, J., Bayliss, A., et al., 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759778.CrossRefGoogle Scholar
Lessa, C.M.B., Gomes, V.S., Cherkinsky, A., Dantas, M.AT., 2021. Isotopic paleoecology (δ13C, δ18O) of two megamammals assemblages from the late Pleistocene of Brazilian intertropical region. Journal of South American Earth Sciences 112, 103576.CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, B., et al., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725757.CrossRefGoogle Scholar
Ribeiro, R.C., Kinoshita, A., Figueiredo, A.M.G, Carvalho, I.S., Baffa, O., 2013. Electron spin resonance dating of the late Quaternary megafauna fossils from Baixa Grande, Bahia, Brazil. Quaternary International 305, 9196.CrossRefGoogle Scholar
Ruff, C.B., 2003. Long bone articular and diaphyseal structure in Old World monkeys and apes. II: Estimation of body mass. American Journal of Physical Anthropology 120, 1637.CrossRefGoogle ScholarPubMed
Smith, R.J., 1984. Allometric scaling in comparative biology: problems of concept and method. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology 246, R152R160.CrossRefGoogle ScholarPubMed
Smith, R.J., 1993. Bias in equations used to estimate fossil primate body mass. Journal of Human Evolution 25, 3141.CrossRefGoogle Scholar
Smith, R.J., 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140, 476486.CrossRefGoogle ScholarPubMed
Valkenburgh, B.V., 1990. Skeletal and dental predictors of body mass in carnivores. In: Damuth, J., MacFadden, B. (Eds.), Body Size in Mammalian Paleobiology Estimation and Biological Implications. Cambridge University Press, New York, pp. 181205.Google Scholar
Wood, R., 2015. From revolution to convention: the past, present and future of radiocarbon dating. Journal of Archaeological Science 56, 6172.CrossRefGoogle Scholar
Zazzo, A., 2014. Bone and enamel carbonate diagenesis: a radiocarbon prospective. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 168178.CrossRefGoogle Scholar
Zazzo, A., Saliège, J.F., 2011. Radiocarbon dating of biological apatites: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 5261.CrossRefGoogle Scholar
Supplementary material: File

Dantas and Cherkinsky supplementary material

Dantas and Cherkinsky supplementary material

Download Dantas and Cherkinsky supplementary material(File)
File 9.8 KB