Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T20:12:58.829Z Has data issue: false hasContentIssue false

Archaeology of random recursive dags and Cooper-Frieze random networks

Published online by Cambridge University Press:  13 June 2023

Simon Briend
Affiliation:
Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, CNRS, Orsay, France
Francisco Calvillo
Affiliation:
Department of Mathematics and Applications, École Normale Supérieure, Paris, France
Gábor Lugosi*
Affiliation:
Department of Economics and Business, Pompeu Fabra University, Barcelona, Spain Barcelona Graduate School of Economics, ICREA, Barcelona, Spain
*
Corresponding author: Gábor Lugosi; Email: gabor.lugosi@gmail.com

Abstract

We study the problem of finding the root vertex in large growing networks. We prove that it is possible to construct confidence sets of size independent of the number of vertices in the network that contain the root vertex with high probability in various models of random networks. The models include uniform random recursive dags and uniform Cooper-Frieze random graphs.

Type
Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This research was supported by a Huawei Technologies Co., Ltd. grant. Simon Briend acknowledges the support of Région Ile de France. Gábor Lugosi acknowledges the support of Ayudas Fundación BBVA a Proyectos de Investigación Científica 2021 and the Spanish Ministry of Economy and Competitiveness, Grant PGC2018-101643-B-I00 and FEDER, EU.

References

Díaz Cort, J., Serna Iglesias, M. J., Spirakis, P. G., Torán Romero, J. and Tsukiji, T.. (1994) On the expected depth of boolean circuits. Technical report, Technical Report LSI-94-7-R, Universitat Politecnica de Catalunya, Dep. LSI.Google Scholar
Addario-Berry, L., Devroye, L., Lugosi, G. and Velona, V. (2022) Broadcasting on random recursive trees. Ann. Appl. Probab. 32(1) 497528.10.1214/21-AAP1686CrossRefGoogle Scholar
Albert, R. and Barabási, A.-L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1) 4797.CrossRefGoogle Scholar
Banerjee, S. and Bhamidi, S. (2022) Root finding algorithms and persistence of Jordan centrality in growing random trees. Ann. Appl. Probab. 32(3) 21802210.CrossRefGoogle Scholar
Banerjee, S. and Huang, X. (2023) Degree centrality and root finding in growing random networks. Electron. J. Probab. 28 139.CrossRefGoogle Scholar
Bhandari, R. (1999) Survivable Networks: Algorithms for Diverse Routing. Springer Science & Business Media.Google Scholar
Boucheron, S., Lugosi, G. and Massart, P. (2013) Concentration inequalities: A Nonasymptotic Theory of Independence. Oxford University Press.CrossRefGoogle Scholar
Brandenberger, A. M., Devroye, L. and Goh, M. K. (2022) Root estimation in Galton–Watson trees. Random Struct. Algor. 61(3) 520542.10.1002/rsa.21072CrossRefGoogle Scholar
Broutin, N. and Fawzi, O. (2012) Longest path distance in random circuits. Comb. Probab. Comput. 21(6) 856881.10.1017/S0963548312000260CrossRefGoogle Scholar
Bubeck, S., Devroye, L. and Lugosi, G. (2017a) Finding Adam in random growing trees. Random Struct. Algor. 50(2) 158172.CrossRefGoogle Scholar
Bubeck, S., Eldan, R., Mossel, E. and Rácz, M. (2017b) From trees to seeds: on the inference of the seed from large trees in the uniform attachment model. Bernoulli 23(4A) 28872916.CrossRefGoogle Scholar
Bubeck, S., Mossel, E. and Rácz, M. (2015) On the influence of the seed graph in the preferential attachment model. IEEE Trans. Network Sci. Eng. 2(1) 3039.CrossRefGoogle Scholar
Cooper, C. and Frieze, A. M. (2003) On a general model of web graphs. Random Struct. Algor. 22 311335.CrossRefGoogle Scholar
Crane, H. and Xu, M. (2021a) Inference on the history of a randomly growing tree. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 83(4) 639668.CrossRefGoogle Scholar
Crane, H. and Xu, M. (2021b), Root and community inference on the latent growth process of a network using noisy attachment models, arXiv preprint arXiv: 2107.00153.Google Scholar
Curien, N., Duquesne, T., Kortchemski, I. and Manolescu, I. (2015) Scaling limits and influence of the seed graph in preferential attachment trees. J. de l’École Polytechnique–Math. 2 134.10.5802/jep.15CrossRefGoogle Scholar
Devroye, L. (1987) Branching processes in the analysis of the heights of trees. Acta Inform. 24(3) 277298.10.1007/BF00265991CrossRefGoogle Scholar
Devroye, L. and Janson, S. (2011) Long and short paths in uniform random recursive dags. Arkiv för Matematik 49(1) 6177.CrossRefGoogle Scholar
Devroye, L. and Reddad, T. (2019) On the discovery of the seed in uniform attachment trees. Internet Math., 7593.Google Scholar
Drmota, M. (2009) Random Trees: An Interplay Between Combinatorics and Probability. Springer Science & Business Media.10.1007/978-3-211-75357-6CrossRefGoogle Scholar
Frieze, A. and Karoński, M. (2016) Introduction to Random Graphs. Cambridge University Press.Google Scholar
Haigh, J. (1970) The recovery of the root of a tree. J. Appl. Probab. 7(1) 7988.10.2307/3212150CrossRefGoogle Scholar
Jog, V. and Loh, P.-L. (2016) Analysis of centrality in sublinear preferential attachment trees via the crump-mode-jagers branching process. IEEE Trans. Network Sci. Eng. 4(1) 112.CrossRefGoogle Scholar
Jog, V. and Loh, P.-L. (2018) Persistence of centrality in random growing trees. Random Struct. Algorithms 52(1) 136157.CrossRefGoogle Scholar
Khim, J. and Loh, P.-L. (2016) Confidence sets for the source of a diffusion in regular trees. IEEE Trans. Network Sci. Eng. 4(1) 2740.10.1109/TNSE.2016.2627502CrossRefGoogle Scholar
Lugosi, G. and Pereira, A. S. (2019) Finding the seed of uniform attachment trees. Electron. J. Probab. 24 115.CrossRefGoogle Scholar
Mahmoud, H. M. (2014) The degree profile in some classes of random graphs that generalize recursive trees. Methodol. Comput. Appl. 16(3) 527538.10.1007/s11009-012-9312-9CrossRefGoogle Scholar
Navlakha, S. and Kingsford, C. (2011) Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comput. Biol. 7(4) e1001119.CrossRefGoogle ScholarPubMed
Pittel, B. (1994) Note on the heights of random recursive trees and random m-ary search trees. Random Struct. Algor. 5(2) 337347.10.1002/rsa.3240050207CrossRefGoogle Scholar
Shah, D. and Zaman, T. R. (2011) Rumors in a network: Who’s the culprit? IEEE Trans. Inform. Theory 57(8) 51635181.10.1109/TIT.2011.2158885CrossRefGoogle Scholar
Shah, D. and Zaman, T. (2016) Finding rumor sources on random trees. Oper. Res. 64(3) 736755.CrossRefGoogle Scholar
Tsukiji, T. and Mahmoud, H. (2001) A limit law for outputs in random recursive circuits. Algorithmica 31(3) 403412.CrossRefGoogle Scholar
Tsukiji, T. and Xhafa, F. (1996) On the depth of randomly generated circuits. Springer, pp. 208220, European Symposium on Algorithms. CrossRefGoogle Scholar