Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T19:26:56.588Z Has data issue: false hasContentIssue false

Portfolio management under drawdown constraint in discrete-time financial markets

Published online by Cambridge University Press:  09 December 2022

Diego Hernández-Bustos*
Affiliation:
Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas U.N.A.M.
Daniel Hernández-Hernández*
Affiliation:
Research Center for Mathematics (CIMAT)
*
*Postal address: Circuito Escolar 3000, C.U., Ciudad de México, Coyoacán, 04510, México. Email address: diego.hernandez@iimas.unam.mx
**Postal address: Apartado postal 402, Guanajuato, GTO, 36000, México. Email address: dher@cimat.mx

Abstract

Considering a representative agent in the market, we study the long-term optimal investment problem in a discrete-time financial market, introducing a set of restrictions in the admissible strategies. The drawdown constraints limit the size of possible losses of the portfolio and impose a floor-based performance measure. The optimal growth rate is characterized, and under suitable hypotheses it is proved that an optimal strategy exists. The approach to solving this problem is based on dynamic programming techniques and a fixed point argument adapted from the theory of Markov decision processes.

MSC classification

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, A. and Sircar, R. (2018). Portfolio benchmarking under drawdown constraint and stochastic Sharpe ratio. SIAM J. Financial Math. 9, 435464.CrossRefGoogle Scholar
Ash, R. B. (2000). Probability and Measure Theory. Academic Press, New York.Google Scholar
Bauerle, N. and Rieder, U. (2011). Markov Decision Processes with Applications to Finance. Springer, Berlin.CrossRefGoogle Scholar
Berge, E. (1963). Topological Spaces. MacMillan, New York.Google Scholar
Bielecki, T., Hernández-Hernández, D. and Pliska, R. (1999). Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management. Math. Meth. Operat. Res. 50, 167188.CrossRefGoogle Scholar
Bielecki, T. R. and Pliska, S. R. (1999). Risk-sensitive dynamic asset management. Appl. Math. Optimization 39, 337360.CrossRefGoogle Scholar
Cavazos-Cadena, R. and Hernández-Hernández, D. (2016). A characterization of the optimal certainty equivalent of the average cost via the Arrow–Pratt sensitivity function. Math. Operat. Res. 41, 224235.CrossRefGoogle Scholar
Cavazos-Cadena, R. and Hernández-Hernández, D. (2002). Solution to the risk-sensitive average optimality equation in communicating Markov decision chains with finite state space: an alternative approach. Math. Meth. Operat. Res. 56, 473479.CrossRefGoogle Scholar
Cavazos-Cadena, R. and Salem-Silva, F. (2009). The discounted method and equivalence of average criteria for risk sensitive Markov decision processes on Borel space. Appl. Math. Optimization 61, 167190.CrossRefGoogle Scholar
Chekhlov, A., Uryasev, S. and Zabarankin, M. (2005). Drawdown measure in portfolio optimization. Internat. J. Theoret. Appl. Finance 8, 1358.CrossRefGoogle Scholar
Cherny, V. and Oblój, J. (2013). Portfolio optimization under non-linear drawdown constraint in a semimartingale financial model. Finance Stoch. 17, 771800.CrossRefGoogle Scholar
Cvitanić, J. and Karatzas, I. (1994). On portfolio optimization under ‘drawdown’ constraints. IMA Volumes Math. Appl. 65, 7788.Google Scholar
Elie, R. and Touzi, N. (2008). Optimal lifetime consumption and investment under a drawdown constraint. Finance Stoch. 12, 299330.CrossRefGoogle Scholar
Fouque, J.-P., Papanicolaou, G. and Sircar, K. R. (2000). Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press.Google Scholar
Grossman, S. J. and Zhou, Z. (1993). Optimal investment strategies for controlling drawdowns. Math. Finance 3, 241276.CrossRefGoogle Scholar
Guasoni, P. and Obloj, J. (2016). The incentives of hedge fund fees and high-water marks. Math. Finance 26, 269295.CrossRefGoogle Scholar
Hernández-Hernández, D. and Marcus, S. I. (1996). Risk sensitive control of Markov processes in countable state space. Systems Control Lett. 29, 147–155. Corrigendum: 34 (1999), 105106.Google Scholar
Hernández-Hernández, D. and Treviño Aguilar, E. (2019). A free-model characterization of the asymptotic certainty equivalent by the Arrow–Pratt index. In Modeling, Stochastic Control, Optimization, and Applications, eds G. Yin and Q. Zhang, Springer, Cham, pp. 261–281.CrossRefGoogle Scholar
Himmelberg, C. J., Partasarathy, T. and Van Vleck, F. S. (1976). Optimal plants for dynamic programming problems. Math. Operat. Res. 1, 390394.CrossRefGoogle Scholar
Jaśkiewicz, A. (2007). Average optimal for risk-sensitive control with general state space. Ann. Appl. Prob. 17, 654675.CrossRefGoogle Scholar
Jaśkiewicz, A. and Nowak, A. S. (2006). Zero-sum ergodic stochastic games with Feller transition probabilities. SIAM J. Control Optimization 45, 773789.CrossRefGoogle Scholar
Karatzas, I., Lehoczky, J. P. and Shreve, S. E. (1987). Optimal portfolio and consumption decisions for a ‘small investor’ on a finite horizon. SIAM J. Control Optimization 25, 15571586.CrossRefGoogle Scholar
Kirk, W. A. (2001). Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory, eds W. A. Kirk and B. Sims, Springer, Dordrecht, pp. 134.CrossRefGoogle Scholar
Klein, E. and Thomson, A. C. (1984). Theory of Correspondences. John Wiley, New York.Google Scholar
Kuratowski, K. (1966). Topology. Academic Press, New York.Google Scholar
Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous time model. J. Econom. Theory 3, 373413.CrossRefGoogle Scholar
Pham, H. (2003). A large deviations approach to optimal long term investment. Finance Stoch. 7, 169195.CrossRefGoogle Scholar
Pham, H. (2003). A risk-sensitive control dual approach to a large deviations control problem. Systems Control Lett. 49, 295309.CrossRefGoogle Scholar
Roche, H. (2006). Optimal consumption and investment strategies under wealth ratcheting. Available at http://ciep.itam.mx/hroche/Research/MDCRESFinal.pdf. Google Scholar
Schal, M. (1993). Average optimality in dynamic programming with general state space. Math. Operat. Res. 18, 163172.CrossRefGoogle Scholar
Sekine, J. (2006). A note on long-term optimal portfolios under drawdown constraints. Adv. Appl. Prob. 36, 673692.CrossRefGoogle Scholar
Sekine, J. (2013). Long-term optimal investment with a generalized drawdown constraint. SIAM J. Financial Math. 4, 452473.CrossRefGoogle Scholar
Sladký, K. (2008). Growth rates and average optimality in risk sensitive Markov decision chains. Kybernetika 44, 205226.Google Scholar