Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T14:47:00.380Z Has data issue: false hasContentIssue false

Generation and decay of counter-rotating vortices downstream of yawed wind turbines in the atmospheric boundary layer

Published online by Cambridge University Press:  22 September 2020

Carl R. Shapiro*
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218, USA
Dennice F. Gayme
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218, USA
Charles Meneveau
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218, USA
*
Email address for correspondence: cshapir5@jhu.edu

Abstract

A quantitative understanding of the dominant mechanisms that govern the generation and decay of the counter-rotating vortex pair (CVP) produced by yawed wind turbines is needed to fully realize the potential of yawing for wind farm power maximization and regulation. Observations from large eddy simulations (LES) of yawed wind turbines in the turbulent atmospheric boundary layer and concepts from the aircraft trailing vortex literature inform a model for the shed vorticity and circulation. The model is formed through analytical integration of simplified forms of the vorticity transport equation. Based on an eddy viscosity approach, it uses the boundary-layer friction velocity as the velocity scale and the width of the vorticity distribution itself as the length scale. As with the widely used Jensen model for wake deficit evolution in wind farms, our analytical expressions do not require costly numerical integration of differential equations. The predicted downstream decay of maximum vorticity and total circulation agree well with LES results. We also show that the vorticity length scale grows linearly with downstream distance and find several power laws for the decay of maximum vorticity. These results support the notion that the decay of the CVP is dominated by gradual cancellation of the vorticity at the line of symmetry of the wake through cross-diffusion.

Type
JFM Rapids
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastankhah, M. & Porté-Agel, F. 2016 Experimental and theoretical study of wind turbine wakes in yawed conditions. J. Fluid Mech. 806, 506541.CrossRefGoogle Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.CrossRefGoogle Scholar
Branlard, E. & Gaunaa, M. 2016 Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors. Wind Energy 19 (2), 345358.CrossRefGoogle Scholar
Calaf, M., Meneveau, C. & Meyers, J. 2010 Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22 (1), 015110.CrossRefGoogle Scholar
Cantwell, B. & Rott, N. 1988 The decay of a viscous vortex pair. Phys. Fluids 31, 32133224.CrossRefGoogle Scholar
Chamorro, L. P., Troolin, D. R., Lee, S.-J., Arndt, R. E. A. & Sotiropoulos, F. 2013 Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine. Exp. Fluids 54 (2), 1459.CrossRefGoogle Scholar
Devenport, W. J., Rife, M. C., Liapis, S. I. & Follin, G. J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech 312, 67106.CrossRefGoogle Scholar
van Dommelen, L. & Shankar, S. 1995 Two counter-rotating diffusing vortices. Phys. Fluids 7 (4), 808819.CrossRefGoogle Scholar
Gerz, T., Holzäpfel, F. & Darracq, D. 2002 Commercial aircraft wake vortices. Prog. Aerosp. Sci. 38 (3), 181208.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series, and Products. Academic Press.Google Scholar
Howland, M. F., Bossuyt, J., Martínez-Tossas, L. A., Meyers, J. & Meneveau, C. 2016 Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions. J. Renew. Sustain. Energy 8 (4), 043301.CrossRefGoogle Scholar
Howland, M. F., Lele, S. K. & Dabiri, J. O. 2019 Wind farm power optimization through wake steering. Proc. Natl Acad. Sci. USA 116 (29), 1449514500.CrossRefGoogle ScholarPubMed
Ivanell, S., Mikkelsen, R., Sørensen, J. N. & Henningson, D. 2010 Stability analysis of the tip vortices of a wind turbine. Wind Energy 13 (8), 705715.CrossRefGoogle Scholar
van Jaarsveld, J. P. J., Holten, A. P. C., Elesenaar, A., Trieling, R. R. & van Heijst, G. J. F. 2011 An experimental study of the effect of external turbulence on the decay of a single vortex and a vortex pair. J. Fluid Mech 670, 214239.CrossRefGoogle Scholar
Jensen, N. O. 1983 A note on wind generator interaction. Tech. Rep. Risø-M-2411. Risø National Laboratory.Google Scholar
Leweke, T., Dizès, S. Le & Williamson, C. H. K. 2016 Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48 (1), 507541.CrossRefGoogle Scholar
Martínez-Tossas, L. A., Annoni, J., Fleming, P. A. & Churchfield, M. J. 2019 The aerodynamics of the curled wake: a simplified model in view of flow control. Wind Energy Sci. 4 (1), 127138.CrossRefGoogle Scholar
Martínez-Tossas, L. A. & Branlard, E. 2020 The curled wake model: equivalence of shed vorticity models. J. Phys.: Conf. Ser. 1452, 012069.Google Scholar
Martínez-Tossas, L. A., Churchfield, M. J. & Meneveau, C. 2017 Optimal smoothing length scale for actuator line models of wind turbine blades based on gaussian body force distribution. Wind Energy 20 (6), 10831096.CrossRefGoogle Scholar
Meneveau, C. 2019 Big wind power: seven questions for turbulence research. J. Turbul. 20 (1), 220.CrossRefGoogle Scholar
Moeng, C.-H. 1984 A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41 (13), 20522062.2.0.CO;2>CrossRefGoogle Scholar
Munters, W., Meneveau, C. & Meyers, J. 2016 Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows. Phys. Fluids 28 (2), 025112.CrossRefGoogle Scholar
Ohring, S. & Lugt, H. J. 1993 The decay of a pair of point vortices in a viscous fluid. Phys. Fluids A 5 (12), 32993301.CrossRefGoogle Scholar
Otsu, N. 1979 A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9 (1), 6266.CrossRefGoogle Scholar
Pope, S. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Shapiro, C. R., Gayme, D. F. & Meneveau, C. 2018 Modelling yawed wind turbine wakes: a lifting line approach. J. Fluid Mech. 841, R1.CrossRefGoogle Scholar
Shapiro, C. R., Starke, G. M., Meneveau, C. & Gayme, D. F. 2019 A wake modeling paradigm for wind farm design and control. Energies 12 (15), 2956.CrossRefGoogle Scholar
Sørensen, J. N. 2011 Instability of helical tip vortices in rotor wakes. J. Fluid Mech. 682, 14.CrossRefGoogle Scholar
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30 (1), 107138.CrossRefGoogle Scholar
Stevens, R. J. A. M., Martínez, L. A. & Meneveau, C. 2018 Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments. Renew. Energy 116 (Part A), 470478.CrossRefGoogle Scholar
Takahashi, N., Ishii, H. & Miyazaki, T. 2005 The influence of turbulence on a columnar vortex. Phys. Fluids 17 (3), 035105.CrossRefGoogle Scholar
Tombach, I. 1973 Observations of atmospheric effects on vortex wake behavior. J. Aircraft 10 (11), 641647.CrossRefGoogle Scholar
Zong, H. & Porté-Agel, F. 2020 A point vortex transportation model for yawed wind turbine wakes. J. Fluid Mech. 890, A8.CrossRefGoogle Scholar