Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T13:45:15.679Z Has data issue: false hasContentIssue false

Study of flame–flow interactions in turbulent boundary layer premixed flame flashback over a flat plate using direct numerical simulation

Published online by Cambridge University Press:  18 September 2023

Guo Chen
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 PR China
Haiou Wang*
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 PR China
Andrea Gruber
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway SINTEF Energy Research, Trondheim, Norway
Kun Luo
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 PR China
Jianren Fan
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 PR China
*
Email address for correspondence: wanghaiou@zju.edu.cn

Abstract

Lean hydrogen/air premixed flame flashback in a turbulent boundary layer over a flat plate is investigated using three-dimensional direct numerical simulation with detailed chemical kinetics. The upstream propagation of the flame takes place in near-wall turbulence and the interaction between the flame and the approaching reactant flow is studied. It is found that backflow regions are always present immediately upstream of flame bulges that are convex towards the reactants, confirming earlier observations. A flashback speed, including the effects of flame displacement speed and flow velocity, is introduced to quantify the flame flashback behaviour. This analysis indicates that the flashback speed is overall positive and it is considerably affected by the presence of the backflow regions. A budget analysis of the pressure transport equation is performed to explain the presence of the backflow regions. It is suggested that the positive dilatation and thermal diffusion terms near the leading edge of flame bulges are the main reasons for the pressure increase, leading to an adverse pressure gradient. The effects of the flame-induced adverse pressure gradient on the structures of the turbulent boundary layer are also investigated. It is revealed that the near-wall mean velocity and skin-friction coefficient are reduced due to the adverse pressure gradient. The coherent vortical structures of the boundary layer turbulence are lifted by the adverse pressure gradient. The analysis of the Reynolds stress component showed that the ejection event is augmented by combustion while the sweep event is attenuated, which facilitates the occurrence of flame flashback.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aspden, A.J., Day, M.S. & Bell, J.B. 2011 Turbulence-flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287320.CrossRefGoogle Scholar
Aubertine, C.D. & Eaton, J.K. 2005 Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient. J. Fluid Mech. 532, 345364.CrossRefGoogle Scholar
Bailey, J.R. & Richardson, E.S. 2021 DNS analysis of boundary layer flashback in turbulent flow with wall-normal pressure gradient. Proc. Combust. Inst. 38, 27912799.CrossRefGoogle Scholar
Baumgartner, G. 2014 Flame flashback in premixed hydrogen-air combustion systems. PhD thesis, Technical University of Munich.Google Scholar
Baumgartner, G., Boeck, L.R. & Sattelmayer, T. 2015 Experimental investigation of the transition mechanism from stable flame to flashback in a generic premixed combustion system with high-speed micro-particle image velocimetry and micro-plif combined with chemiluminescence imaging. Trans. ASME J. Engng Gas Turbines Power 138 (2), 021501.Google Scholar
Björnsson, Ó.H., Klein, S.A. & Tober, J. 2021 Boundary layer flashback model for hydrogen flames in confined geometries including the effect of adverse pressure gradient. Trans. ASME J. Engng Gas Turbines Power 143 (6), 061003.CrossRefGoogle Scholar
Bollinger, L.E. & Edse, R. 1956 Effect of burner-tip temperature on flash back of turbulent hydrogen-oxygen flames. Ind. Engng Chem. 48, 802807.CrossRefGoogle Scholar
Bradley, D., Lawes, M., Liu, K., Verhelst, S. & Woolley, R. 2007 Laminar burning velocities of lean hydrogen–air mixtures at pressures up to 1.0 MPa. Combust. Flame 149 (1–2), 162172.CrossRefGoogle Scholar
Bradley, D., Sheppart, C.G.W., Woolley, R., Greenhalgh, D.A. & Lockett, R.D. 2000 The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions. Combust. Flame 122 (1–2), 195209.CrossRefGoogle Scholar
Chakraborty, N. & Cant, R.S. 2005 Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105.CrossRefGoogle Scholar
Chen, G., Wang, H., Luo, K. & Fan, J. 2021 Flame edge structures and dynamics in planar turbulent non-premixed inclined slot-jet flames impinging at a wall. J. Fluid Mech. 920, A43.CrossRefGoogle Scholar
Chen, J.H., et al. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 015001.CrossRefGoogle Scholar
Chen, J.H. & Im, H.G. 1998 Correlation of flame speed with stretch in turbulent premixed methane/air flames. Proc. Combust. Inst. 27, 819826.CrossRefGoogle Scholar
Chu, S. & Majumdar, A. 2012 Opportunities and challenges for a sustainable energy future. Nature 488, 294303.CrossRefGoogle ScholarPubMed
Corino, E.R. & Brodkey, R.S. 1969 A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 130.CrossRefGoogle Scholar
Daniele, S., Jansohn, P. & Boulouchos, K. 2010 Flashback propensity of syngas flames at high pressure: diagnostic and control. In Turbo Expo: Power for Land, Sea, and Air, Volume 2: Combustion, Fuels and Emissions, Parts A and B, pp. 1169–1175.Google Scholar
Day, M.S., Bell, J.B., Bremer, P.-T., Pascucci, V., Beckner, V. & Lijewski, M.J. 2009 Turbulence effects on cellular burning structures in lean premixed hydrogen flames. Combust. Flame 156 (5), 10351045.CrossRefGoogle Scholar
Duan, Z., Shaffer, B. & McDonell, V. 2013 a Study of fuel composition, burner material and tip temperature effects on flashback of enclosed jet flame. In Turbo Expo: Power for Land, Sea, and Air, Volume 1A: Combustion, Fuels and Emissions.CrossRefGoogle Scholar
Duan, Z., Shaffer, B., McDonell, V., Baumgartner, G. & Sattelmayer, T. 2013 b Influence of burner material, tip temperature and geometrical flame configuration on flashback propensity of h2-air jet flames. In Turbo Expo: Power for Land, Sea, and Air, Volume 1A: Combustion, Fuels and Emissions.CrossRefGoogle Scholar
Dunn-Rankin, D. 2011 Lean Combustion: Technology and Control. Academic Press.Google Scholar
Ebi, D. & Clemens, N.T. 2016 Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames. Combust. Flame 168, 3952.CrossRefGoogle Scholar
Eichler, C., Baumgartner, G. & Sattelmayer, T. 2011 Experimental investigation of turbulent boundary layer flashback limits for premixed hydrogen-air flames confined in ducts. Trans. ASME J. Engng Gas Turbines Power 134, 011502.Google Scholar
Eichler, C. & Sattelmayer, T. 2012 Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV. Exp. Fluids 52, 347360.CrossRefGoogle Scholar
Endres, A. & Sattelmayer, T. 2018 Large eddy simulation of confined turbulent boundary layer flashback of premixed hydrogen-air flames. Intl J. Heat Fluid Flow 72, 151160.CrossRefGoogle Scholar
Endres, A. & Sattelmayer, T. 2019 Numerical investigation of pressure influence on the confined turbulent boundary layer flashback process. Fluids 4, 146.CrossRefGoogle Scholar
Fine, B. 1958 The flashback of laminar and turbulent burner flames at reduced pressure. Combust. Flame 2, 253266.CrossRefGoogle Scholar
Goldmann, A. & Dinkelacker, F. 2021 Experimental investigation and modeling of boundary layer flashback for non-swirling premixed hydrogen/ammonia/air flames. Combust. Flame 226, 362379.CrossRefGoogle Scholar
Goldmann, A. & Dinkelacker, F. 2022 Investigation of boundary layer flashback for non-swirling premixed hydrogen/ammonia/nitrogen/oxygen/air flames. Combust. Flame 238, 111927.CrossRefGoogle Scholar
Gruber, A., Chen, J.H., Valiev, D. & Law, C.K. 2012 Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech. 709, 516542.CrossRefGoogle Scholar
Gruber, A., Kerstein, A.R., Valiev, D., Law, C.K., Kolla, H. & Chen, J.H. 2015 Modeling of mean flame shape during premixed flame flashback in turbulent boundary layers. Proc. Combust. Inst. 35, 14851492.CrossRefGoogle Scholar
Gruber, A., Sankaran, R., Hawkes, E.R. & Chen, J.H. 2010 Turbulent flame–wall interaction: a direct numerical simulation study. J. Fluid Mech. 658, 532.CrossRefGoogle Scholar
Hawkes, E.R. & Chen, J.H. 2004 Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames. Combust. Flame 138, 242258.CrossRefGoogle Scholar
Heeger, C., Gordon, R.L., Tummers, M.J., Sattelmayer, T. & Dreizler, A. 2010 Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation. Exp. Fluids 49, 853863.CrossRefGoogle Scholar
Hoferichter, V., Hirsch, C. & Sattelmayer, T. 2017 Prediction of confined flame flashback limits using boundary layer separation theory. Trans. ASME J. Engng Gas Turbines Power 139, 021505.CrossRefGoogle Scholar
Hoferichter, V. & Sattelmayer, T. 2017 Boundary layer flashback in premixed hydrogen–air flames with acoustic excitation. Trans. ASME J. Engng Gas Turbines Power 140 (5), 051502.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kalantari, A., Auwaijan, N. & McDonell, V. 2019 Boundary layer flashback prediction for turbulent premixed jet flames: comparison of two models. In Turbo Expo: Power for Land, Sea, and Air, Volume 4A: Combustion, Fuels, and Emissions.CrossRefGoogle Scholar
Kalantari, A. & McDonell, V. 2017 Boundary layer flashback of non-swirling premixed flames: mechanisms, fundamental research, and recent advances. Prog. Energy Combust. Sci. 61, 249292.CrossRefGoogle Scholar
Kalantari, A., Sullivan-Lewis, E. & McDonell, V. 2015 Flashback propensity of turbulent hydrogen–air jet flames at gas turbine premixer conditions. Trans. ASME J. Engng Gas Turbines Power 138, 061506.Google Scholar
Kalantari, A., Sullivan-Lewis, E. & McDonell, V. 2016 Application of a turbulent jet flame flashback propensity model to a commercial gas turbine combustor. Trans. ASME J. Engng Gas Turbines Power 139, 041506.Google Scholar
Karimi, N., Heeger, C., Christodoulou, L. & Dreizler, A. 2015 Experimental and theoretical investigation of the flashback of a swirling, bluff-body stabilised, premixed flame. Z. Phys. Chem. 229, 663689.CrossRefGoogle Scholar
Kennedy, C.A. & Carpenter, M.H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Maths 14, 397433.CrossRefGoogle Scholar
Khitrin, L.N., Moin, P.B., Smirnov, D.B. & Shevchuk, V.U. 1965 Peculiarities of laminar- and turbulent-flame flashbacks. Symp. (Intl) Combust. 10 (1), 12851291.CrossRefGoogle Scholar
Kido, H., Nakahara, M., Nakashima, K. & Hashimoto, J. 2002 Influence of local flame displacement velocity on turbulent burning velocity. In Proceedings 29th International Symposium on Combustion, pp. 1855–1861. The Combustion Institute.CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Krogstad, P.-Å. & Skåre, P.E. 1995 Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer. Phys. Fluids 7, 20142024.CrossRefGoogle Scholar
Kurdyumov, V.N., Fernández, E. & Liñán, A. 2000 Flame flashback and propagation of premixed flames near a wall. Proc. Combust. Inst. 28, 18831889.CrossRefGoogle Scholar
Kurdyumov, V., Fernández-Tarrazo, E., Truffaut, J.-M., Quinard, J., Wangher, A. & Searby, G. 2007 Experimental and numerical study of premixed flame flashback. Proc. Combust. Inst. 31, 12751282.CrossRefGoogle Scholar
Lee, J.-H. & Sung, H.J. 2009 Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101131.CrossRefGoogle Scholar
Lee, S.T. & T'ien, J.S. 1982 A numerical analysis of flame flashback in a premixed laminar system. Combust. Flame 48, 273285.CrossRefGoogle Scholar
Lewis, B. & von Elbe, G. 1943 Stability and structure of burner flames. J. Chem. Phys. 11, 7597.CrossRefGoogle Scholar
Li, D., Luo, K. & Fan, J. 2016 Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. J. Fluid Mech. 802, 359394.CrossRefGoogle Scholar
Li, J., Zhao, Z., Kazakov, A. & Dryer, F.L. 2004 An updated comprehensive kinetic model of hydrogen combustion. Intl J. Chem. Kinet. 36, 566575.CrossRefGoogle Scholar
Lieuwen, T.C. 2012 Flame Stabilization, Flashback, Flameholding, and Blowoff, pp. 293316. Cambridge University Press.Google Scholar
Lipatnikov, A. & Chomiak, J. 2002 Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28, 174.CrossRefGoogle Scholar
Lipatnikov, A.N. & Chomiak, J. 2005 Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31 (1), 173.CrossRefGoogle Scholar
Markstein, G.H. 1949 Cell structure of propane flames burning in tubes. J. Chem. Phys. 17 (4), 428429.CrossRefGoogle Scholar
Moser, R.D., Kim, J. & Mansour, N.N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_\tau =590$. Phys. Fluids 11, 943945.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377, 347373.CrossRefGoogle Scholar
Novoselov, A.G., Ebi, D. & Noiray, N. 2022 Accurate prediction of confined turbulent boundary layer flashback through a critically strained flame model. Trans. ASME J. Engng Gas Turbines Power 144 (10), 101013.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2008 Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205231.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. RT Edwards, Inc.Google Scholar
Ranjan, R., Ebi, D.F. & Clemens, N.T. 2019 Role of inertial forces in flame-flow interaction during premixed swirl flame flashback. Proc. Combust. Inst. 37 (4), 51555162.CrossRefGoogle Scholar
Rieth, M., Gruber, A. & Chen, J.H. 2023 The effect of pressure on lean premixed hydrogen-air flames. Combust. Flame 250, 112514.CrossRefGoogle Scholar
Rieth, M., Gruber, A., Williams, F.A. & Chen, J.H. 2021 Enhanced burning rates in hydrogen-enriched turbulent premixed flames by diffusion of molecular and atomic hydrogen. Combust. Flame 239, 111740.CrossRefGoogle Scholar
Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T. & Law, C.K. 2007 Structure of a spatially developing turbulent lean methane–air bunsen flame. Proc. Combust. Inst. 31, 12911298.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schneider, C.E. & Steinberg, A.M. 2018 Early warning signals of flashback in CH$_4$/H$_2$ swirl flames. In 2018 Joint Propulsion Conference, p. 4473.Google Scholar
Schneider, C.E. & Steinberg, A.M. 2020 Statistics and dynamics of intermittent boundary layer flashback in swirl flames. J. Propul. Power 36, 940949.CrossRefGoogle Scholar
Skåre, P.E. & Krogstad, P.-Å. 1994 A turbulent equilibrium boundary layer near separation. J. Fluid Mech. 272, 319348.CrossRefGoogle Scholar
Spalart, P.R. & Watmuff, J.H. 1993 Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337371.CrossRefGoogle Scholar
Stratford, B.S. 1959 The prediction of separation of the turbulent boundary layer. J. Fluid Mech. 5 (1), 116.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R. & Chen, J.H. 2017 a A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH$_4$/air premixed jet flame. Combust. Flame 180, 110123.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R., Chen, J.H., Zhou, B., Li, Z. & Aldén, M. 2017 b Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. J. Fluid Mech. 815, 511536.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R., Ren, J., Chen, G., Luo, K. & Fan, J. 2021 a 2-D and 3-D measurements of flame stretch and turbulence–flame interactions in turbulent premixed flames using DNS. J. Fluid Mech. 913, A11.CrossRefGoogle Scholar
Wang, H., Wang, Z., Luo, K., Hawkes, E.R., Chen, J.H. & Fan, J. 2021 b Direct numerical simulation of turbulent boundary layer premixed combustion under auto-ignitive conditions. Combust. Flame 228, 292301.CrossRefGoogle Scholar
Williams, F.A. 1985 Combustion Theory, 2nd edn. CRC Press.Google Scholar
Willmarth, W.W. & Lu, S.S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 6592.CrossRefGoogle Scholar
Xia, H., Han, W., Wei, X., Zhang, M., Wang, J., Huang, Z. & Hasse, C. 2023 Numerical investigation of boundary layer flashback of CH$_4$/H$_2$/air swirl flames under different thermal boundary conditions in a bluff-body swirl burner. Proc. Combust. Inst. 39, 45414551.CrossRefGoogle Scholar
Zel'dovich, Y.B. 1944 Theory of Combustion and Detonation Of Gases. Acad. Sci. USSR.Google Scholar
Zel'dovich, Y.B., Barenblatt, G.I., Librovich, V.B. & Makhviladze, G.M. 1985 The Mathematical Theory of Combustion and Explosions. Plenum.CrossRefGoogle Scholar