Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T19:15:18.416Z Has data issue: false hasContentIssue false

Bulk polycrystalline ceria–doped Al2O3 and YAG ceramics for high-power density laser-driven solid-state white lighting: Effects of crystallinity and extreme temperatures - CORRIGENDUM

Published online by Cambridge University Press:  17 March 2020

Abstract

Type
Corrigendum
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Materials Research Society 2020

doi: https://doi.org/10.1557/jmr.2019.417, Published by Materials Research Society, 07 February 2020.

The authors of this article [Reference Penilla, Sellappan, Duarte, Wieg, Wingert and Garay1] would like to correct the following:

  1. (i) The middle initial of Matthew C. Wingert was omitted.

  2. (ii) Two in-text citations have been updated for the following sentences due to errors in the reference list:

The behavior of Ce:Al2O3 is consistent with the low-temperature optical behavior of other rare earths doped into oxides, such as Nd- [38, 39] and Er-doped [31] YAG, that exhibit optical 4f to 4f transitions that are shielded from crystal–field interactions by the outer 5d shell.

The bulk ceramic Ce:Al2O3 phosphors were produced using an all-solid-state, one-step reaction-densification route using CAPAD [23, 31].

  1. (iii) Errors throughout the references necessitate an updated reference list. Below is the proper reference list, which has also been updated in the original article:

1. P. Pust, P.J. Schmidt, and W. Schnick: A revolution in lighting. Nat. Mater. 14, 454 (2015).

2. J.J. Wierer and J.Y. Tsao: Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photon. Rev. 7, 963 (2013).

3. V. Bachmann, C. Ronda, and A. Meijerink: Temperature quenching of yellow Ce3+ luminescence in YAG: Ce. Chem. Mater. 126, 2077 (2009).

4. R.M. Waxler, G.W. Cleek, I.H. Malitson, M.J. Dodge, and T.A. Hahn: Optical and mechanical properties of some neodymium-doped laser glasses. J. Res. Natl. Bur. Stand., Sect. A 75, 163 (1971).

5. P.H. Klein and W.J. Croft: Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°–300 °K. J. Appl. Phys. 38, 1603 (1967).

6. B. Zhou, W. Luo, S. Liu, S. Gu, M. Lu, Y. Zhang, Y. Fan, W. Jiang, and L. Wang: Enhancing the performance of Ce:YAG phosphor-in-silica-glass by controlling interface reaction. Acta Mater. 130, 289 (2017).

7. K. Waetzig, M. Kunzer, and I. Kinski: Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG:Ce ceramic phosphors for white LEDs. J. Mater. Res. 29, 2138 (2014).

8. C. Cozzan, G. Lheureux, N.O. Dea, E.E. Levin, J. Graser, T.D. Sparks, S. Nakamura, S.P. Denbaars, C. Weisbuch, and R. Seshadri: Stable heat-conducting phosphor composites for high-power laser lighting. ACS Appl. Mater. Interfaces 10, 5673 (2018).

9. K.A. Denault, M. Cantore, S. Nakamura, S.P. DenBaars, and R. Seshadri: Efficient and stable laser-driven white lighting. AIP Adv. 3, 072107 (2013).

10. J. Park, S. Cho, and H. Kwon: Alumnum–ceramic composites for thermal management in energy-conversion systems. Sci. Rep. 8, 17852 (2018).

11. J. Wang, X. Tang, P. Zheng, S. Li, T. Zhou, and R-J. Xie: Thermally self-managing YAG:Ce–Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration. J. Mater. Chem. C 7, 3901–3908 (2019).

12. P. Fulmek, C. Sommer, P. Hartmann, P. Pachler, H. Hoschopf, G. Langer, J. Nicolics, and F.P. Wenzl: On the thermal load of the color-conversion elements in phosphor-based white light-emitting diodes. Adv. Opt. Mater. 1, 753 (2013).

13. Y. Yu, Z. Liu, N. Dai, Y. Sheng, H. Luan, and J. Peng: Ce–Tb–Mn co-doped white light emitting glasses suitable for long-wavelength UV excitation. Opt. Express 19, 19473 (2011).

14. L. Devys, G. Dantelle, G. Laurita, E. Homeyer, I. Gautier-Luneau, C. Dujardin, R. Seshadri, and T. Gacoin: A strategy to increase phosphor brightness: Application with Ce3+-doped Gd3Sc2Al3O12. J. Lumin. 190, 62 (2017).

15. M. Raukas, A. Konrad, and K.C. Mishra: Luminescence in nanosize Y2O3:Ce. J. Lumin. 122–123, 773 (2007).

16. V. Lupei, A. Lupei, and A. Ikesue: Transparent polycrystalline ceramic laser materials. Opt. Mater. 30, 1781 (2008).

17. J.Y. Tsao, M.H. Crawford, M.E. Coltrin, A.J. Fischer, D.D. Koleske, G.S. Subramania, G.T. Wang, J.J. Wierer, and R.F. Karlicek: Toward smart and ultra-efficient solid-state lighting. Adv. Opt. Mater. 2, 809 (2014).

18. A.T. Wieg, E.H. Penilla, C.L. Hardin, Y. Kodera, and J.E. Garay: Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting. APL Mater. 4, 126105 (2016).

19. W.T. Silfvast: Laser Fundamentals, 2nd ed. (Cambridge University Press, New York, 2004).

20. T.H. Maiman: Stimulated optical radiation in ruby. Nature 187, 493 (1960).

21. K.F. Wall and A. Sanchez: Titanium sapphire lasers. Linc. Lab. J. 3, 447 (1990).

22. M.D. Chambers and D.R. Clarke: Doped oxides for high-temperature luminescence and lifetime thermometry. Annu. Rev. Mater. Res. 39, 325 (2009).

23. E.H. Penilla, Y. Kodera, and J.E. Garay: Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD). Mater. Sci. Eng., B 177, 1178 (2012).

24. E.H. Penilla, Y. Kodera, and J.E. Garay: Blue–green emission in terbium-doped alumina (Tb:Al2O3) transparent ceramics. Adv. Funct. Mater. 23, 6036 (2013).

25. E.H. Penilla, L.F. Devia-Cruz, M.A. Duarte, C.L. Hardin, Y. Kodera, and J.E. Garay: Gain in polycrystalline Nd-doped alumina: Leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials. Light: Sci. Appl. 7, 33 (2018).

26. P. Sellappan, V. Jayarem, A.H. Chokshi, and C. Davikar: Synthesis of bulk, dense, nanocrystalline yttrium aluminum garnet from amorphous powders. J. Am. Ceram. Soc. 90, 3638 (2007).

27. N. Thangamari, A.S. Gandhi, V. Jayaram, and A.H. Chokshi: Low-temperature high-pressure consolidation of amorphous Al2O3–15 mol% Y2O3. J. Am. Ceram. Soc. 88, 2696 (2005).

28. M.H. Nguyen, S.J. Lee, and W. Kriven: Synthesis of oxide powders by way of a polymeric steric entrapment precursor route. J. Mater. Res. 14, 3417 (1999).

29. D. Ribero and W.M. Kriven: Synthesis of LiFePO4 powder by the organic–inorganic steric entrapment method. J. Mater. Res. 30, 2133 (2015).

30. P. Sellappan, C. Tang, J. Shi, and J.E. Garay: An integrated approach to doped thin films with strain-tunable magnetic anisotropy: Powder synthesis, target preparation and pulsed laser deposition of Bi:YIG. Mater. Res. Lett. 5, 41 (2017).

31. E.H. Penilla, C.L. Hardin, Y. Kodera, S.A. Basun, D.R. Evans, and J.E. Garay: The role of scattering and absorption on the optical properties of birefringent polycrystalline ceramics: Modeling and experiments on ruby (Cr:Al2O3). J. Appl. Phys. 119, 023106 (2016).

32. A. Purwanto, W.N. Wang, T. Ogi, I.W. Lenggoro, E. Tanabe, and K. Okuyama: High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process. J. Alloys Compd. 463, 350 (2008).

33. X. He, X. Liu, R. Li, B. Yang, K. Yu, M. Zeng, and R. Yu: Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles. Sci. Rep. 6, 22238 (2016).

34. T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma: Ce3+ centres in Y2Al5O12 (YAG) single crystals. J. Phys. Soc. Jpn. 60, 2437 (1991).

35. D.S. Hamilton, S.K. Gayen, G.J. Pogatshnik, R.D. Ghen, and W.J. Miniscalco: Optical-absorption and photoionization measurements from the excited state of Ce:YAG. Phys. Rev. B: Condens. Matter Mater. Phys. 39, 8807 (1989).

36. E. Zych, C. Brecher, and J. Glodo: Kinetics of cerium emission in a YAG:Ce single crystal: The role of traps. J. Condens. Matter Phys. 12, 1947 (2000).

37. G.B. Nair and S.J. Dhoble: Assessment of electron-vibrational interaction (EVI) parameters of YAG:Ce3+, TAG:Ce3+, and LuAG:Ce3+ garnet phosphors by spectrum fitting method. Spectrochim. Acta, Part A 173, 822 (2017).

38. B.F. Aull and H.P. Jenssen: Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron. 18, 925 (1982).

39. N. Ter-Gabrielyan, M. Dubinskii, G. Newburgh, A. Michael, and L.D. Merkle: Temperature dependence of a diode-pumped cryogenic Er:YAG laser. Opt. Express 17, 7159 (2009).

The authors regret these errors.

References

Penilla, E., Sellappan, P., Duarte, M., Wieg, A., Wingert, M., and Garay, J.: Bulk polycrystalline ceria–doped Al2O3 and YAG ceramics for high-power density laser-driven solid-state white lighting: Effects of crystallinity and extreme temperatures. J. Mater. Res. (2020). doi: 10.1557/jmr.2019.417.Google Scholar