Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T16:21:44.738Z Has data issue: false hasContentIssue false

DISSIPATION OF WAVE ENERGY AND MITIGATION OF WAVE FORCE BY MULTIPLE FLEXIBLE POROUS PLATES

Published online by Cambridge University Press:  26 December 2024

ANJAN SASMAL
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India; e-mail: anjaniitg@gmail.com, soumenisi@gmail.com
SOUMEN DE*
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India; e-mail: anjaniitg@gmail.com, soumenisi@gmail.com

Abstract

The hydroelastic interaction between water waves and multiple submerged porous elastic plates of arbitrary lengths in deep water is examined using the Galerkin approximation technique. We observe the influence of flexible porous plates of arbitrary lengths by analysing the reflection coefficient, dissipated energy and wave forces acting on the plates. Results are presented for various values of angle of incidence, separation lengths of plates, porosity levels, submergence depth and flexural rigidity. The convergence and accuracy of the method are verified by comparing the results with existing literature. The significant impact of flexural rigidity in the presence of porosity on wave reflection, dissipated energy and wave forces is demonstrated. Moreover, a notable reduction in wave load is observed with an increase in the number of plates.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashok, R., Gunasundari, C. and Manam, S. R., “Explicit solutions of the scattering problems involving vertical flexible porous structures”, J. Fluids Struct. 99 (2020) Article ID: 103149; doi:10.1016/j.jfluidstructs.2020.103149.CrossRefGoogle Scholar
Behera, H. and Ng, C. O., “Interaction between oblique waves and multiple bottom-standing flexible porous barriers near a rigid wall”, Meccanica 53 (2018) 871885; doi:10.1007/s11012–017–0789–8.CrossRefGoogle Scholar
Boral, S., Sahoo, T. and Meylan, M. H., “Gravity wave interaction with an articulated submerged plate resting on a Winkler foundation”, Appl. Math. Model. 113 (2022) 416438; doi:10.1016/j.apm.2022.09.007.CrossRefGoogle Scholar
Chakrabarti, A., Banerjea, S., Mandal, B. N. and Sahoo, T., “A Unified approach to problems of scattering of surface water waves by vertical barriers”, J. Aust. Math. Soc. Ser. B 39 (1997) 93103; doi:10.1017/S0334270000009231.CrossRefGoogle Scholar
Chakraborty, R. and Mandal, B. N., “Scattering of water waves by a submerged thin vertical elastic plate”, Arch. Appl. Mech. 84 (2014) 207217; doi:10.1007/s00419-013-0794-x.CrossRefGoogle Scholar
Chakraborty, R., Mondal, A. and Gayen, R., “Interaction of surface water waves with a vertical elastic plate: a hypersingular integral equation approach”, Z. Angew. Math. Phys. 67 (2016) 115; doi:10.1007/s00033-016-0709-0.CrossRefGoogle Scholar
Chwang, A. T., “A porous wave maker theory”, J. Fluid Mech. 132 (1983) 395406; doi:10.1017/S0022112083001676.CrossRefGoogle Scholar
De, S., Mandal, B. N. and Chakrabarti, A., “Use of Abel integral equations in water wave scattering by two surface piercing barriers”, Wave Motion 47 (2010) 279288; doi:10.1016/j.wavemoti.2009.12.002.CrossRefGoogle Scholar
Dean, W. R., “On the reflection of surface waves by submerged plane barriers”, Math. Proc. Cambridge Philos. Soc. 41 (1945) 231238; doi:10.1017/S030500410002260X.CrossRefGoogle Scholar
Evans, D. V. and Morris, C. A. N., “Complementary approximations to the solution of a problem in water waves”, J. Inst. Math. Appl. 10 (1972) 19; doi:10.1093/imamat/10.1.1.CrossRefGoogle Scholar
Gayen, R. and Mondal, A., “Scattering of water waves by a pair of vertical porous plates”, Geophys. Astrophys. Fluid Dyn. 109 (2015) 480496; doi:10.1080/03091929.2015.1076812.CrossRefGoogle Scholar
Hassan, M. U., Meylan, M. H. and Peter, M. A., “Water-wave scattering by submerged elastic plates”, QJMAM 62 (2009) 321344; doi:10.1093/qjmam/hbp008.Google Scholar
Heller, S. R. and Abramson, H. N., “Hydroelasticity: a new naval science”, J. Amer. Soc. Naval Eng. 71(2) (1959) 205209; doi:10.1111/j.1559-3584.1959.tb02326.x.CrossRefGoogle Scholar
Isaacson, M., Baldwin, J., Premasiri, S. and Yang, G., “Wave interactions with double slotted barriers”, Appl. Ocean Res. 21 (1999) 8191; doi:10.1016/S0141-1187(98)00039-X.CrossRefGoogle Scholar
Isaacson, M., Premasiri, S. and Yang, G., “Wave interactions with vertical slotted barriers”, J. Waterway Port Coastal Ocean Eng. 124 (1998) 118126; doi:10.1061/(ASCE)0733-950X(1998)124:3(118).CrossRefGoogle Scholar
Jarvis, R. J., “The scattering of surface waves by two vertical plane barriers”, J. Inst. Math. Appl. 7 (1971) 207215.Google Scholar
Karmakar, D. and Soares, C. G., “Wave transformation due to multiple bottom-standing porous barriers”, Ocean Eng. 80 (2014) 5063; doi:10.1016/j.oceaneng.2014.01.012.CrossRefGoogle Scholar
Karp, N. S. and Karal, C. F., “The elastic field behaviour in the neighbourhood of a crack of arbitrary angle”, Comm. Pure Appl. Math. 15 (1962) 413421; doi:10.1002/cpa.3160150404.Google Scholar
Levine, H. and Rodemich, E., “Scattering of surface waves on an ideal fluid”, Technical Report 78, Mathematics and Statistics Laboratory, Standford University, 1958.Google Scholar
Li, A. J., Liu, Y. and Li, H. J., “Accurate solutions to water wave scattering by vertical thin porous barriers”, Math. Problem Eng. 2015 (2015) 111; doi:10.1155/2015/985731.Google Scholar
Liu, Y., Li, A. J. and Fang, Z. B., “Oblique wave scattering by porous breakwaters/seawalls: novel analytical solutions based on contour integral without finding complex roots”, Appl. Ocean Res. 101 (2020) Article ID: 102258; doi:10.1016/j.apor.2020.102258.CrossRefGoogle Scholar
Losada, I. J., Losada, M. A. and Roldan, A. J., “Propagation of oblique incident waves past rigid vertical thin barriers”, Appl. Ocean Res. 14 (1992) 191199; doi: 10.1016/0141-1187(92)90014-B CrossRefGoogle Scholar
Macaskill, C., “Reflection of water waves by a permeable barrier”, J. Fluid Mech. 75 (1979) 141157; doi:10.1017/S0022112079001385.CrossRefGoogle Scholar
Manam, S. R. and Sivanesan, M., “Scattering of water waves by vertical porous barriers: an analytical approach”, Wave Motion 67 (2016) 89101; doi:10.1016/j.wavemoti.2016.07.008.CrossRefGoogle Scholar
Mandal, B. N. and Chakrabarti, A., Water wave scattering by barriers, 1st edn (WIT Press, Southampton, UK, 2000).Google Scholar
McIver, P., “Scattering of surface waves by two surface piercing vertical barriers”, IMA J. Appl. Math. 35(1) (1985) 117; doi:10.1093/imamat/35.339.CrossRefGoogle Scholar
Meylan, M., “A flexible vertical sheet in waves”, Int. J. Offshore Polar Eng. 5 (1995) 105110.Google Scholar
Morris, C. A. N., “A variational approach to an unsymmetric water wave scattering problem”, J. Eng. Math. 9 (1975) 291300; doi:10.1007/BF01540666.CrossRefGoogle Scholar
Newman, J. N., “Interaction of water waves with two closely spaced vertical obstacles”, J. Fluid Mech. 66 (1974) 97106; doi:10.1017/S0022112074000085.CrossRefGoogle Scholar
Peter, M. A. and Meylan, M., “A general spectral approach to the time-domain evolution of linear water waves impacting on a vertical elastic plate”, SIAM J. Appl. Math. 70 (2010) 23082328; doi:10.1137/09075655.CrossRefGoogle Scholar
Porter, D., “The transmission of surface waves through a gap in a vertical barrier”, Math. Proc. Cambridge Philos. Soc. 71 (1972) 411421; doi:10.1017/S0305004100050647.CrossRefGoogle Scholar
Porter, R. and Evans, D. V., “Complementary approximations to solve wave scattering by vertical barriers”, J. Fluid Mech. 294 (1995) 155180; doi:10.1017/S0022112095002849.CrossRefGoogle Scholar
Roy, R., De, S. and Mandal, B. N., “Water wave scattering by three thin vertical barriers arranged asymmetrically in deep water”, Fluid Dyn. Res. 51 (2019) Article ID 045508, 23 pages; doi:10.1088/1873-7005/ab2d4d.CrossRefGoogle Scholar
Sasmal, A. and De, S., “Oblique water wave diffraction by two vertical porous barriers with nonidentical submerged gaps”, Meccanica 54 (2019) 15251544; doi:10.1007/s11012-019-01031-1.CrossRefGoogle Scholar
Sasmal, A. and De, S., “Energy dissipation and oblique wave diffraction by three asymmetrically arranged porous barriers”, Ships Offshore Struct. 17 (2020) 105115; doi:10.1080/17445302.2020.1816783.CrossRefGoogle Scholar
Sasmal, A. and De, S., “Hydroelastic analysis of surface gravity wave interaction with multiple flexible porous structures”, J. Fluids Struct. 120 (2023) Article ID: 103906; doi:10.1016/j.jfluidstructs.2023.103906.CrossRefGoogle Scholar
Sasmal, A. and De, S., “Mitigation of wave force and dissipation of energy by multiple arbitrary porous barriers”, Waves Random Complex Media 34 (2024) 523546; doi:10.1080/17455030.2021.1915514.CrossRefGoogle Scholar
Sasmal, A., Paul, S. and De, S., “Effect of porosity on oblique wave diffraction by two unequal vertical porous barriers”, J. Mar. Sci. Appl. 18 (2019) 417432; doi:10.1007/s11804-019-00107-4.CrossRefGoogle Scholar
Singh, M. and Gayen, R., “Scattering of linear gravity-capillary waves by a completely submerged vertical porous elastic plate”, Waves Random Complex Media (2022) 121; doi: 10.1080/17455030.2022.2120220.Google Scholar
Singh, S. and Kaligatla, R., “The combined refraction-diffraction effect on water wave scattering by a vertical flexible-porous structure”, J. Fluids Struct. 116 (2023) Article ID: 103791; doi:10.1016/j.jfluidstructs.2022.103791.CrossRefGoogle Scholar
Smith, C. M., “Some problems in linear water wave theory”, Ph. D. Thesis, University of Bristol, Bristol, 1983.Google Scholar
Smith, M. J. A., Peter, M. A., Abrahams, I. D. and Meylan, M. H., “On the Wiener–Hopf solution of water-wave interaction with a submerged elastic or poroelastic plate”, Proc. Roy. Soc. London A Math. Phy. Sci. 476 (2020) Article ID: 2242; doi:10.1098/rspa.2020.0360.Google ScholarPubMed
Sollitt, C. K. and Cross, R. H., “Wave transmission through permeable breakwaters”, Coastal Eng. Proc. 1 (1972) 18271846; doi:10.1061/9780872620490.106.Google Scholar
Sturova, I. V., “The effect of periodic surface pressure on a rectangular elastic plate floating on shallow water”, ZAMM 70 (2006) 378386; doi:10.1016/j.jappmathmech.2006.07.016.Google Scholar
Ursell, F., “The effect of a fixed vertical barrier on surface waves in deep waterMath. Proc. Cambridge Philos. Soc. 43 (1947) 374382; doi:10.1017/S0305004100023604.CrossRefGoogle Scholar
Williams, W. E.Note on the scattering of water waves by a vertical barrier”, Math. Proc. Cambridge Philos. Soc. 62 (1988) 507509; doi:10.1017/S0305004100040135.CrossRefGoogle Scholar
Wu, Y. S., “Numerical and experimental hydroelasticity of marine structures–a review”, in: ICHD'94 Proc. Int. Conf. on Hydrodynamics, Wuxi, China, 30 October–3 November 1994 (editorial board for Journal of Hydrodynamics), 3041.Google Scholar
Yu, X., “Diffraction of water waves by porous breakwaters”, J. Waterway Port Coastal Ocean Eng. 121 (1995) 275282; doi:10.1061/(ASCE)0733-950X(1995)121:6(275).CrossRefGoogle Scholar
Yu, X. and Chwang, A. T., “Wave motion through porous structures”, ASCE J. Eng. Mech. 120(5) (1994) 9891008; doi:10.1061/(ASCE)0733-9399(1994)120:5(989).CrossRefGoogle Scholar
Zheng, S., Meylan, M. H., Fan, L., Greaves, D. and Iglesias, G., “Wave scattering by a floating porous elastic plate of arbitrary shape: a semi-analytical study”, J. Fluids Struct. 92 (2020) Article ID: 102827; doi:10.1016/j.jfluidstructs.2019.102827.CrossRefGoogle Scholar
Zheng, S., Meylan, M. H., Greaves, D. and Iglesias, G., “Water-wave interaction with submerged porous elastic disks”, Phys. Fluids. 32 (2020) Article ID: 047106; doi:10.1063/5.0006119.CrossRefGoogle Scholar
Zheng, S., Meylan, M. H., Zhu, G., Greaves, D. and Iglesias, G., “Hydroelastic interaction between water waves and an array of circular floating porous elastic plates”, J. Fluid Mech. 900 (2020) Article ID: A20; doi:10.1017/jfm.2020.508.CrossRefGoogle Scholar