Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T23:10:25.811Z Has data issue: false hasContentIssue false

CONTINUOUS LOGIC AND BOREL EQUIVALENCE RELATIONS

Published online by Cambridge University Press:  22 June 2022

ANDREAS HALLBÄCK
Affiliation:
INSTITUT DE MATHÉMATIQUES DE JUSSIEU–PRG UNIVERSITÉ PARIS CITÉ 75205 PARIS CEDEX 13, FRANCE E-mail: superand007@hotmail.com
MACIEJ MALICKI
Affiliation:
INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES UL. SNIADECKICH 8, 00-656 WARSAW, POLAND E-mail: mamalicki@gmail.com
TODOR TSANKOV*
Affiliation:
INSTITUT CAMILLE JORDAN UNIVERSITÉ CLAUDE BERNARD LYON 1 43 BOULEVARD DU 11 NOVEMBRE 1918 69622 VILLEURBANNE CEDEX, FRANCE and INSTITUT UNIVERSITAIRE DE FRANCE PARIS, FRANCE

Abstract

We study the complexity of isomorphism of classes of metric structures using methods from infinitary continuous logic. For Borel classes of locally compact structures, we prove that if the equivalence relation of isomorphism is potentially $\mathbf {\Sigma }^0_2$, then it is essentially countable. We also provide an equivalent model-theoretic condition that is easy to check in practice. This theorem is a common generalization of a result of Hjorth about pseudo-connected metric spaces and a result of Hjorth–Kechris about discrete structures. As a different application, we also give a new proof of Kechris’s theorem that orbit equivalence relations of actions of Polish locally compact groups are essentially countable.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, H., Polish group actions: Dichotomies and generalized elementary embeddings . Journal of the American Mathematical Society , vol. 11 (1998), no. 2, pp. 397449.CrossRefGoogle Scholar
Becker, H. and Kechris, A. S., The Descriptive Set Theory of Polish Group Actions , London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996.Google Scholar
Ben Yaacov, I., Modular functionals and perturbations of Nakano spaces . Journal of Logic and Analysis , vol. 1 (2009), Article no. 1, 42 pp.Google Scholar
Ben Yaacov, I., Lipschitz functions on topometric spaces . Journal of Logic and Analysis , vol. 5 (2013), Article no. 8, 21 pp.Google Scholar
Ben Yaacov, I., Berenstein, A., and Henson, C. W., Model-theoretic independence in the Banach lattices ${L}_p(\mu)$ . Israel Journal of Mathematics , vol. 183 (2011), pp. 285320.Google Scholar
Ben Yaacov, I., Berenstein, A., Henson, C. W., and Usvyatsov, A., Model theory for metric structures , Model Theory with Applications to Algebra and Analysis, vol. 2 (Z. Chatzidakis, D. Macpherson, A. Pillay, and A. Wilkie, editors), Cambridge University Press, Cambridge, 2008, pp. 315427.Google Scholar
Ben Yaacov, I., Doucha, M., Nies, A., and Tsankov, T., Metric Scott analysis . Advances in Mathematics , vol. 318 (2017), pp. 4687.Google Scholar
Ben Yaacov, I. and Henson, C. W., Generic orbits and type isolation in the Gurarij space . Fundamenta Mathematicae , vol. 237 (2017), no. 1, pp. 4782.CrossRefGoogle Scholar
Ben Yaacov, I. and Iovino, J., Model theoretic forcing in analysis . Annals of Pure and Applied Logic , vol. 158 (2009), no. 3, pp. 163174.CrossRefGoogle Scholar
Cúth, M., Doležal, M., Doucha, M., and Kurka, O., Polish spaces of Banach spaces. Complexity of isometry and isomorphism classes, preprint, 2022, arXiv:2204.06834.Google Scholar
Cúth, M., Doležal, M., Doucha, M., and Kurka, O., Polish spaces of Banach spaces . Forum of Mathematics, Sigma , vol. 10 (2022), Article no. e26, 28 pp.Google Scholar
Coskey, S. and Lupini, M., A López–Escobar theorem for metric structures, and the topological Vaught conjecture . Fundamenta Mathematicae , vol. 234 (2016), no. 1, pp. 5572 Google Scholar
Eagle, C. J., Omitting types for infinitary $\left[0,1\right]$ -valued logic . Annals of Pure and Applied Logic , vol. 165 (2014), no. 3, pp. 913932.Google Scholar
Elliott, G. A., A classification of certain simple C*-algebras , Quantum and Non-Commutative Analysis (Kyoto, 1992) (H. Araki, K. R. Ito, A. Kishimoto, and I. Ojima, editors), Kluwer Academic Publishers, Dordrecht, 1993, pp. 373385.Google Scholar
Elliott, G. A., Farah, I., Paulsen, V. I., Rosendal, C., Toms, A. S., and Törnquist, A., The isomorphism relation for separable C*-algebras . Mathematical Research Letters , vol. 20 (2013), no. 6, pp. 10711080.Google Scholar
Friedman, H. and Stanley, L., A Borel reducibility theory for classes of countable structures, Journal of Symbolic Logic, vol. 54 (1989), no. 3, pp. 894–914.Google Scholar
Gao, S., Invariant Descriptive Set Theory , Pure and Applied Mathematics, vol. 293, CRC Press, Boca Raton, 2009.Google Scholar
Gao, S. and Kechris, A. S., On the classification of Polish metric spaces up to isometry . Memoirs of the American Mathematical Society , vol. 161 (2003), no. 766.Google Scholar
Henson, C. W., Nonstandard hulls of Banach spaces . Israel Journal of Mathematics , vol. 25 (1976), nos. 1–2, pp. 108144.Google Scholar
Henson, C. W. and Iovino, J., Ultraproducts in analysis , Analysis and Logic (Mons, 1997) (C. Finet and C. Michaux, editors), Cambridge University Press, Cambridge, 2002, pp. 1110.Google Scholar
Hjorth, G., Actions by the classical Banach spaces, Journal of Symbolic Logic, vol. 65 (2000), no. 1, pp. 392–420.Google Scholar
Hjorth, G., Classification and Orbit Equivalence Relations , Mathematical Surveys and Monographs, vol. 75, American Mathematical Society, Providence, 2000.Google Scholar
Hjorth, G., An oscillation theorem for groups of isometries . Geometric and Functional Analysis , vol. 18 (2008), no. 2, pp. 489521.Google Scholar
Hjorth, G. and Kechris, A. S., Borel equivalence relations and classifications of countable models . Annals of Pure and Applied Logic , vol. 82 (1996), no. 3, pp. 221272.Google Scholar
Hjorth, G., Kechris, A. S., and Louveau, A., Borel equivalence relations induced by actions of the symmetric group , Annals of Pure and Applied Logic , vol. 92 (1998), no. 1, pp. 63112.Google Scholar
Ivanov, A. and Majcher-Iwanow, B., Polish $G$ -spaces and continuous logic . Annals of Pure and Applied Logic , vol. 168 (2017), no. 4, pp. 749775.Google Scholar
de Jonge, E. and van Rooij, A. C. M., Introduction to Riesz Spaces , Mathematical Centre Tracts, vol. 78, Mathematisch Centrum, Amsterdam, 1977.Google Scholar
Kechris, A. S., Countable sections for locally compact group actions . Ergodic Theory and Dynamical Systems , vol. 12 (1992), no. 2, pp. 283295.Google Scholar
Kechris, A. S., Classical Descriptive Set Theory , Graduate Texts in Mathematics, vol. 156, Springer, New York, 1995.Google Scholar
Lusky, W., Some consequences of W. Rudin’s paper: “ ${L}_p$ -isometries and equimeasurability” [Indiana Univ. Math. J. 25 (1976), no. 3, 215–228] . Indiana University Mathematics Journal , vol. 27 (1978), no. 5, pp. 859866.Google Scholar
Melleray, J., A note on Hjorth’s oscillation theorem, Journal of Symbolic Logic, vol. 75 (2010), no. 4, pp. 1359–1365.Google Scholar
Sabok, M., Completeness of the isomorphism problem for separable ${C}^{\ast }$ -algebras . Inventiones Mathematicae , vol. 204 (2016), no. 3, pp. 833868.Google Scholar
Struble, R. A., Metrics in locally compact groups . Compositio Mathematica , vol. 28 (1974), pp. 217222.Google Scholar
Thiel, H. and Winter, W., The generator problem for $Z$ -stable ${C}^{\ast }$ -algebras . Transactions of the American Mathematical Society , vol. 366 (2014), no. 5, pp. 23272343.Google Scholar
Toms, A. S. and Winter, W., $Z$ -stable ASH algebras . Canadian Journal of Mathematics , vol. 60 (2008), no. 3, pp. 703720.Google Scholar