Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T23:37:37.389Z Has data issue: false hasContentIssue false

Sibling oocytes cultured in a time-lapse versus benchtop incubator: how time-lapse incubators improve blastocyst development and euploid rate

Published online by Cambridge University Press:  25 May 2023

N. G. Nobrega*
Affiliation:
TFP GCRM, Glasgow, UK
A. Abdala
Affiliation:
Art Fertility Clinics, Abu Dhabi, UAE
A. El-Damen
Affiliation:
Art Fertility Clinics, Abu Dhabi, UAE
A. Arnanz
Affiliation:
Art Fertility Clinics, Abu Dhabi, UAE
A. Bayram
Affiliation:
Art Fertility Clinics, Abu Dhabi, UAE
I. Elkhatib
Affiliation:
Art Fertility Clinics, Abu Dhabi, UAE
B. Lawrenz
Affiliation:
Art Fertility Clinics, Abu Dhabi, UAE Tubingen University, Tubingen, Germany
H. Fatemi
Affiliation:
Art Fertility Clinics, Abu Dhabi, UAE
N. De Munck*
Affiliation:
Art Fertility Clinics, Abu Dhabi, UAE Brussels IVF, Centre for Reproductive Medicine, UZ Brussels, Belgium
*
Corresponding author: N. G. Nobrega. TFP GCRM, Glasgow, UK. Email: nathali.guimaraes@hotmail.com. N. De Munck. ART Fertility Clinics, Abu Dhabi, UAE. Email: neelke.demunck@uzbrussel.be
Corresponding author: N. G. Nobrega. TFP GCRM, Glasgow, UK. Email: nathali.guimaraes@hotmail.com. N. De Munck. ART Fertility Clinics, Abu Dhabi, UAE. Email: neelke.demunck@uzbrussel.be

Summary

The aim was to study whether a limited exposure of embryos outside the incubator has an effect on embryo development, blastocyst quality and euploid outcomes. This retrospective study was performed at ART Fertility Clinics, Abu Dhabi, United Arab Emirates (UAE) between March 2018 and April 2020 and included 796 mature sibling oocytes that were split randomly between two incubators after intracytoplasmic sperm injection (ICSI): an EmbryoScope™ (ES) incubator and a benchtop incubator, G185 K-SYSTEMS (KS). The fertilization, cleavage, embryo/blastocyst qualities, useable blastocyst and euploid rates were assessed to evaluate the incubator performance. In total, 503 (63.2%) mature oocytes were cultured in the EmbryoScope and 293 (36.8%) in the K-SYSTEMS. No differences were observed in fertilization rate (79.3% vs 78.8%, P = 0.932), cleavage rate (98.5% vs 99.1%, P = 0.676) and embryo quality on Day 3 (P = 0.543) between both incubators, respectively. Embryos cultured in the EmbryoScope, had a significantly higher chance of being biopsied (64.8% vs 49.6%, P < 0.001). Moreover, a significantly higher blastocyst biopsy rate was observed on Day 5 in the EmbryoScope (67.8% vs 57.0%, P = 0.037), with a highly significant increased euploid rate (63.5% vs 37.4%, P = 0.001) and improved blastocyst quality (P = 0.008). We found that exposure of embryos outside the incubator may negatively affect the in vitro blastocyst development and euploid rate on Day 5.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alhelou, Y., Mat Adenan, N. A. and Ali, J. (2018). Embryo culture conditions are significantly improved during uninterrupted incubation: A randomized controlled trial. Reproductive Biology, 18(1), 4045. doi: 10.1016/j.repbio.2017.12.003 CrossRefGoogle ScholarPubMed
Armstrong, S., Bhide, P., Jordan, V., Pacey, A., Marjoribanks, J. and Farquhar, C. (2019). Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database of Systematic Reviews, 5(5), CD011320. doi: 10.1002/14651858.CD011320.pub4 Google ScholarPubMed
Barberet, J., Chammas, J., Bruno, C., Valot, E., Vuillemin, C., Jonval, L., Choux, C., Sagot, P., Soudry, A. and Fauque, P. (2018). Randomized controlled trial comparing embryo culture in two incubator systems: G185 K-System versus EmbryoScope. Fertility and Sterility, 109(2), 302309.e1. doi: 10.1016/j.fertnstert.2017.10.008.CrossRefGoogle ScholarPubMed
Bourdon, M., Pocate-Cheriet, K., Finet de Bantel, A., Grzegorczyk-Martin, V., Amar Hoffet, A., Arbo, E., Poulain, M. and Santulli, P. (2019). Day 5 versus Day 6 blastocyst transfers: A systematic review and meta-analysis of clinical outcomes. Human Reproduction (Oxford), 34(10), 19481964. doi: 10.1093/humrep/dez163 CrossRefGoogle ScholarPubMed
Cairo Consensus Group. (2020). ‘There is only one thing that is truly important in an IVF laboratory: everything’ Cairo Consensus Guidelines on IVF Culture Conditions. Reproductive Biomedicine Online, 40(1), 3360. doi: 10.1016/j.rbmo.2019.10.003 CrossRefGoogle Scholar
Cruz, M., Gadea, B., Garrido, N., Pedersen, K. S., Martınez, M., Pérez-Cano, I., Muñoz, M. and Meseguer, M. (2011). Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. Journal of Assisted Reproduction and Genetics, 28(7), 569573. doi: 10.1007/s10815-011-9549-1 CrossRefGoogle ScholarPubMed
De Munck, N., El Khatib, I., Abdala, A., El-Damen, A., Bayram, A., Arnanz, A., Melado, L., Lawrenz, B. and Fatemi, H. M. (2020). Intracytoplasmic sperm injection is not superior to conventional IVF in couples with non-male factor infertility and preimplantation genetic testing for aneuploidies (PGT-A). Human Reproduction, 35(2), 317327. doi: 10.1093/humrep/deaa002 CrossRefGoogle Scholar
Gardner, D. K. and Schoolcraft, W. B. (1999). In vitro culture of human blastocyst. In: Jansen, R. and Mortimer, D. (eds), Towards Reproductive Certainty: Infertility and Genetics Beyond, pp. 378388. Parthenon Publishing Group Press.Google Scholar
Kahraman, S., Çetinkaya, M., Pirkevi, C., Yelke, H. and Kumtepe, Y. (2012). Comparison of blastocyst development and cycle outcome in patients with eSET using either conventional or time lapse incubators. A prospective study of good prognosis patients. Journal of Reproductive and Stem Cell Biotechnology, 3(2), 5561. doi: 10.1177/205891581200300204 CrossRefGoogle Scholar
Kalleas, D., McEvoy, K., Horne, G., Roberts, S. A. and Brison, D. R. (2022). Live birth rate following undisturbed embryo culture at low oxygen in a time-lapse incubator compared to a high-quality benchtop incubator. Human Fertility, 25(1), 147153. doi: 10.1080/14647273.2020.1729423 CrossRefGoogle Scholar
Kirkegaard, K., Hindkjaer, J. J., Grøndahl, M. L., Kesmodel, U. S. and Ingerslev, H. J. (2012). A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. Journal of Assisted Reproduction and Genetics, 29(6), 565572. doi: 10.1007/s10815-012-9750-x CrossRefGoogle Scholar
Klein, J. and Sauer, M. V. (2001). Assessing fertility in women of advanced reproductive age. American Journal of Obstetrics and Gynecology, 185(3), 758770. doi: 10.1067/mob.2001.114689 CrossRefGoogle ScholarPubMed
Krasnopolskaya, K. V., Beketova, A. N., Sesina, N. I., Сhinchenko, N. K., Badalyan, G. V., Sudarikova, N. M., Bocharova, T. V. and Zakharchenko, E. O. (2019). The effect of short-term disturbance of Day 3 embryo culture on the development and implantation. Gynecological Endocrinology, 35(Suppl. 1), 14. doi: 10.1080/09513590.2019.1632083 CrossRefGoogle ScholarPubMed
La Marca, A. and Sunkara, S. K. (2014). Individualization of controlled ovarian stimulation in IVF using ovarian reserve markers: From theory to practice. Human Reproduction Update, 20(1), 124140. doi: 10.1093/humupd/dmt037 CrossRefGoogle ScholarPubMed
Li, Y. X., Wang, J., Sun, T. Z., Lv, M. Q., Ge, P., Li, H. N. and Zhou, D. X. (2020). Pregnancy outcomes after day 5 versus day 6 blastocyst-stage embryo transfer: A systematic review and meta-analysis. Journal of Obstetrics and Gynaecology Research, 46(4), 595605. doi: 10.1111/jog.14188 CrossRefGoogle ScholarPubMed
Magli, M. C., Gianaroli, L., Ferraretti, A. P., Lappi, M., Ruberti, A. and Farfalli, V. (2007). Embryo morphology and development are dependent on the chromosomal complement. Fertility and Sterility, 87(3), 534541. doi: 10.1016/j.fertnstert.2006.07.1512 CrossRefGoogle ScholarPubMed
Mascarenhas, M., Fox, S. J., Thompson, K. and Balen, A. H. (2019). Cumulative live birth rates and perinatal outcomes with the use of time-lapse imaging incubators for embryo culture: A retrospective cohort study of 1882 ART cycles. 2018. BJOG, 126(2), 280286. doi: 10.1111/1471-0528.15161 CrossRefGoogle Scholar
Mikwar, M., MacFarlane, A. J. and Marchetti, F. (2020). Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutation Research. Reviews in Mutation Research, 785, 108320. doi: 10.1016/j.mrrev.2020.108320 CrossRefGoogle ScholarPubMed
Nakahara, T., Iwase, A., Goto, M., Harata, T., Suzuki, M., Ienaga, M., Kobayashi, H., Takikawa, S., Manabe, S., Kikkawa, F. and Ando, H. (2010). Evaluation of the safety of time-lapse observations for human embryos. Journal of Assisted Reproduction and Genetics, 27(2–3), 9396. doi: 10.1007/s10815-010-9385-8 CrossRefGoogle ScholarPubMed
Palermo, G., Joris, H., Devroey, P. and Van Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic sperm injection of single spermatozoon into an oocyte. Lancet, 340(8810), 1718. doi: 10.1016/0140-6736(92)92425-f CrossRefGoogle ScholarPubMed
Park, H., Bergh, C., Selleskog, U., Thurin-Kjellberg, A. and Lundin, K. (2015). No benefit of culturing embryos in a closed system compared with a conventional incubator in terms of number of good quality embryos: Results from an RCT. Human Reproduction, 30(2), 268275. doi: 10.1093/humrep/deu316 CrossRefGoogle Scholar
Rubio, I., Galán, A., Larreategui, Z., Ayerdi, F., Bellver, J., Herrero, J. and Meseguer, M. (2014). Clinical validation of embryo culture and selection by morphokinetic analysis: A randomized, controlled trial of the embryoscope. Fertility and Sterility, 102(5), 12871294.e5. doi: 10.1016/j.fertnstert.2014.07.738 CrossRefGoogle ScholarPubMed
Sciorio, R., Thong, J. K. and Pickering, S. J. (2018). Comparison of the development of human embryos cultured in either an embryoscope or benchtop incubator. Journal of Assisted Reproduction and Genetics, 35(3), 515522. doi: 10.1007/s10815-017-1100-6 CrossRefGoogle ScholarPubMed
Serdar, C. C., Cihan, M., Yücel, D. and Serdar, M. A. (2021). Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochemia Medica, 31(1), 010502. doi: 10.11613/BM.2021.010502.CrossRefGoogle ScholarPubMed
Swain, J. E. (2014). Decisions for the IVF laboratory: Comparative analysis of embryo culture incubators. Reproductive Biomedicine Online, 28(5), 535547. doi: 10.1016/j.rbmo.2014.01.004 CrossRefGoogle ScholarPubMed
Ubaldi, F. M., Capalbo, A., Colamaria, S., Ferrero, S., Maggiulli, R., Vajta, G., Sapienza, F., Cimadomo, D., Giuliani, M., Gravotta, E., Vaiarelli, A. and Rienzi, L. (2015). Reduction of multiple pregnancies in the advanced maternal age population after implementation of an elective single embryo transfer policy coupled with enhanced embryo selection: Pre- and post-intervention study. Human Reproduction, 30(9), No.9, 20972106. doi: 10.1093/humrep/dev159 CrossRefGoogle ScholarPubMed
Ueno, S., Ito, M., Uchiyama, K., Okimura, T., Yabuuchi, A., Kobayashi, T. and Kato, K. (2019). Closed embryo culture system improved embryological and clinical outcome for single vitrified-warmed blastocyst transfer: A single-center large cohort study. Reproductive Biology, 19(2), 139144. doi: 10.1016/j.repbio.2019.03.004 CrossRefGoogle ScholarPubMed
Vajta, G., Parmegiani, L., Machaty, Z., Chen, W. B. and Yakovenko, S. (2021). Back to the future: Optimised microwell culture of individual human preimplantation stage embryos. Back to the Future. Journal of Assisted Reproduction and Genetics, 38(10), 25632574. doi: 10.1007/s10815-021-02167-4 CrossRefGoogle Scholar
Vandenberghe, L. T. M., Santos-Ribeiro, S., De Munck, N., Desmet, B., Meul, W., De Vos, A., Van de Velde, H., Racca, A., Tournaye, H. and Verheyen, G. (2021). Expanding the time interval between ovulation triggering and oocyte injection: Does it affect the embryological and clinical outcome? Human Reproduction, 36(3), 614623. doi: 10.1093/humrep/deaa338 CrossRefGoogle ScholarPubMed
Wale, P. L. and Gardner, D. K. (2016). The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Human Reproduction Update, 22(1), 222. doi: 10.1093/humupd/dmv034 CrossRefGoogle ScholarPubMed
Wang, W. H., Meng, L., Hackett, R. J., Odenbourg, R. and Keefe, D. L. (2001). Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Human Reproduction, 16(11), 23742378. doi: 10.1093/humrep/16.11.2374 CrossRefGoogle ScholarPubMed
Wang, A., Kort, J., Behr, B. and Westphal, L. M. (2018). Euploidy in relation to blastocyst sex and morphology. Journal of Assisted Reproduction and Genetics, 35(9), 15651572. doi: 10.1007/s10815-018-1262-x CrossRefGoogle ScholarPubMed
Zhang, J. Q., Li, X. L., Peng, Y., Guo, X., Heng, B. C. and Tong, G. Q. (2010). Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reproductive Biomedicine Online, 20(4), 510515. doi: 10.1016/j.rbmo.2009.12.027 CrossRefGoogle ScholarPubMed