Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T08:10:54.787Z Has data issue: false hasContentIssue false

A GENERALISATION OF A SUPERCONGRUENCE ON THE TRUNCATED APPELL SERIES $\boldsymbol F_3$

Published online by Cambridge University Press:  13 July 2022

XIAOXIA WANG
Affiliation:
Department of Mathematics, Shanghai University, Shanghai 200444, PR China e-mail: xiaoxiawang@shu.edu
MENGLIN YU*
Affiliation:
Department of Mathematics, Shanghai University, Shanghai 200444, PR China
Rights & Permissions [Opens in a new window]

Abstract

Recently, Lin and Liu [‘Congruences for the truncated Appell series $F_3$ and $F_4$ ’, Integral Transforms Spec. Funct. 31(1) (2020), 10–17] confirmed a supercongruence on the truncated Appell series $F_3$ . Motivated by their work, we give a generalisation of this supercongruence by establishing a q-supercongruence modulo the fourth power of a cyclotomic polynomial.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

In 1880, Appell defined four kinds of double series $F_1$ , $F_2$ , $F_3$ , $F_4$ in two variables (see [Reference Slater13, pages 210–211]) by generalising the Gauss hypergeometric $_{2}F_1$ -series [Reference Gasper and Rahman1, (1.2.1)]. These four series, called Appell series, are famous in the field of double hypergeometric functions and play an important role in mathematical physics.

Based on the definition of the truncated hypergeometric series, Liu [Reference Liu8] introduced the truncated Appell series, defined by

$$ \begin{align*} F_1[a;b,b';c;x,y]_n &= \sum_{i=0}^{n}\sum_{j=0}^{n}\frac{(a)_{i+j}(b)_i(b')_j}{(c)_{i+j}}\cdot \frac{x^iy^j}{i!j!};\\[-3pt] F_2[a;b,b';c,c';x,y]_n &= \sum_{i=0}^{n}\sum_{j=0}^{n}\frac{(a)_{i+j}(b)_i(b')_j}{(c)_{i}(c')_{j}}\cdot \frac{x^iy^j}{i!j!};\\[-3pt] F_3[a,a';b,b';c;x,y]_n &= \sum_{i=0}^{n}\sum_{j=0}^{n}\frac{(a)_{i}(a')_{j}(b)_i(b')_j}{(c)_{i+j}}\cdot \frac{x^iy^j}{i!j!};\\[-3pt] F_4[a;b;c,c';x,y]_n &= \sum_{i=0}^{n}\sum_{j=0}^{n}\frac{(a)_{i+j}(b)_{i+j}}{(c)_{i}(c')_{j}}\cdot \frac{x^iy^j}{i!j!}, \end{align*} $$

where $(a)_n=a(a+1)\cdots (a+n-1),\ n\in \mathbb {Z}^{+}$ , with $(a)_0=1$ , is the shifted factorial.

Liu [Reference Liu8] confirmed two congruences for $F_1$ and $F_2$ by using some combinatorial identities. Later, Lin and Liu [Reference Lin and Liu7] studied congruence properties of the truncated Appell series $F_3$ and $F_4$ and found the following interesting result: for any odd prime p,

(1.1) $$ \begin{align} F_3[\tfrac12,\tfrac12;\tfrac12,\tfrac12;1;1,1]_{(p-1)/2} \equiv (-1)^{(p-1)/2} \pmod{p^2}. \end{align} $$

Motivated by the works of Lin and Liu and the recent progress on congruences and q-congruences (see [Reference Guo and Schlosser2Reference Li and Wang6, Reference Liu and Petrov9Reference Ni and Pan12, Reference Wei14Reference Yu and Wang18]), we continue the study of congruence relations for the truncated Appell series. The goal of this paper is to give the following generalisation of (1.1).

Theorem 1.1. Let p be an odd prime. Then

$$ \begin{align*} F_3[\tfrac12,\tfrac12;\tfrac12,\tfrac12;1;1,1]_{(p-1)/2} \equiv (-1)^{(p-1)/2} \pmod{p^4}. \end{align*} $$

In fact, Theorem 1.1 can be verified by establishing the following more general q-supercongruence, which is the principal goal of this paper. To state the theorem, we need some q-notation. The q-shifted factorial is given by

$$ \begin{align*} (a;q)_n= \left \{ \begin{array}{@{}ll} (1-a)(1-aq)\cdots (1-aq^{n-1}) & n \in \mathbb {Z}^{+}, \\ 1 &n = 0, \end{array} \right. \end{align*} $$

and the q-binomial coefficients are defined by

$$ \begin{align*} {x\brack k}={x\brack k}_{q} = \left \{ \begin{array}{@{}ll} \dfrac{(q^{1+x-k};q)_k}{(q;q)_k} & k \geq 0, \\ \ 0 & k < 0. \end{array} \right. \end{align*} $$

Furthermore, $ [n]=[n]_q=(1-q^n)/(1-q)=1+q+\cdots +q^{n-1} $ denotes the q-integer, and $\Phi _n(q)$ stands for the nth cyclotomic polynomial in q, which is given by

$$ \begin{align*} \Phi_n(q)=\prod_{\substack{1\leqslant k\leqslant n\\ \gcd(n,k)=1}}(q-\zeta^k) \end{align*} $$

with $\zeta $ a primitive nth root of unity.

Theorem 1.2. Let n be a positive odd integer and d an integer and suppose that $n\geq \max \{2d+1,1-2d\}$ . Then, modulo $\Phi _n(q)^4$ ,

(1.2) $$ \begin{align} &\sum_{i=0}^{{(n-1)}/{2}-d}\sum_{j=0}^{{(n-1)}/{2}+d}\frac{(q^{2d+1};q^2)_{i}^2(q^{1-2d};q^2)_{j}^2}{(q^2;q^2)_i(q^2;q^2)_j(q^2;q^2)_{i+j}} q^{2ij-4di+4dj} \nonumber\\ &\equiv \left \{ \begin{aligned} & (-1)^{{(n-1)}/{2}}q^{{(1-n^2)}/{4}} &d = 0, \\ & (1-q^n)^2q^{|d|(2+3|d|-n)-n+{(1-n^2)}/{4}}\sum_{k=1}^{2|d|}(-1)^{k-|d|+{(n-1)}/{2}}q^{k^2-k}H_k(-2|d|-1)\\ &\quad\quad\times\frac{(q^{n+2|d|-2k+1};q^2)_k(q^{4|d|-2k+2};q^2)_{(n-2|d|-1)/2}}{(q^2;q^2)_k(q^2;q^2)_{(n-2|d|-1)/2}} &d\neq 0, \end{aligned} \right. \end{align} $$

where

$$ \begin{align*} H_k(x)=\sum_{t=1}^{k}\frac{q^{2t+x}}{(1-q^{2t+x})^2}, \end{align*} $$

with $H_k(x)=0$ for any integer $k<1$ .

Clearly, letting $d=0$ , $q \rightarrow 1$ and $n=p$ , an odd prime, in Theorem 1.2, we immediately achieve Theorem 1.1. Additionally, the cases $d=\pm 1$ of Theorem 1.2 yield the following conclusion.

Corollary 1.3. Let $n\geq 3$ be a positive odd integer. Then, modulo $\Phi _n(q)^4$ ,

$$ \begin{align*} &\sum_{i=0}^{{(n-3)}/{2}}\sum_{j=0}^{{(n+1)}/{2}} \frac{(q^{3};q^2)_{i}^2(q^{-1};q^2)_{j}^2}{(q^2;q^2)_i(q^2;q^2)_j(q^2;q^2)_{i+j}}q^{2ij-4i+4j} \notag \\ &\quad \equiv (-1)^{{(n-1)}/{2}}[n]^2\frac{(q^{n-1};q^2)_2}{(1-q^4)}q^{6-2n+{(1-n^2)}/{4}}. \end{align*} $$

Setting $n=p$ , an odd prime, and then letting $q\rightarrow 1$ in Corollary 1.3, we instantly arrive at

(1.3) $$ \begin{align} \sum_{i=0}^{{(p-3)}/{2}}\sum_{j=0}^{{(p+1)}/{2}}\frac{(\frac32)_i^2(-\frac12)_j^2 }{(1)_i(1)_j(1)_{i+j}} \equiv 0 \pmod{p^4}. \end{align} $$

Numerical calculation indicates that the following generalisation of (1.3) should be true.

Conjecture 1.4. Let p be an odd prime and d an integer with $0<d\leq {(p-1)}/{2}$ . Then

(1.4) $$ \begin{align} \sum_{i=0}^{{(p-1)}/{2}-d}\sum_{j=0}^{{(p-1)}/{2}+d}\frac{(\frac{1}{2}+d)_i^2(\frac{1}{2}-d)_j^2 }{(1)_i(1)_j(1)_{i+j}} \equiv 0 \pmod{p^4}. \end{align} $$

2 Proof of Theorem 1.2

The q-Chu–Vandermonde identity [Reference Gasper and Rahman1, (1.5.2)] can be written as

(2.1) $$ \begin{align} {m+n\brack k}= \sum_{j=0}^{k}q^{\,j(m-k+j)} {m\brack k-j} {n\brack j}, \end{align} $$

which is useful in combinatorics and number theory and will play a key role in our proof of Theorem 1.2. Another preliminary result we require is as follows.

Lemma 2.1. Let n be a positive odd integer and d an integer with $n\geq 1-2d$ . Then

$$ \begin{align*} \begin{split} \sum_{j=0}^{{(n-1)}/{2}+d}(-1)^{\,j}q^{ij+{(\,j+2d-n)}j/{2}} {\frac{n-1}{2}+d\brack j} {\frac{n-1}{2}-d+j\brack j} {i+j\brack i}^{-1}= {i+2d-1\brack \frac{n-1}{2}+d} {\frac{n-1}{2}+d+i\brack i}^{-1}. \end{split} \end{align*} $$

Proof. It is routine to verify that

(2.2) $$ \begin{align} {\frac{n-1}{2}+d \brack j} {i+j\brack i}^{-1} &={\frac{n-1}{2}+d+i\brack\frac{n-1}{2}+d-j} {\frac{n-1}{2}+d+i\brack i}^{-1}, \end{align} $$
(2.3) $$ \begin{align} \hspace{-13.5pt}(-1)^{\,j} {\frac{n-1}{2}-d+j\brack j} &={-\frac{n-1}{2}+d-1\brack j} q^{{(n-2d+j)j}/{2}}. \end{align} $$

In view of the two simple relations (2.2) and (2.3), we immediately conclude that

$$ \begin{align*} \begin{split} &\sum_{j=0}^{{(n-1)}/{2}+d} (-1)^{\,j}q^{ij+{(\,j+2d-n)j}/{2}}{\frac{n-1}{2}-d+j\brack j} {\frac{n-1}{2}+d\brack j} {i+j\brack i}^{-1}\\ &\quad ={\frac{n-1}{2}+d+i\brack i}^{-1}\sum_{j=0}^{{(n-1)}/{2}+d}q^{\,j^2+ij} {\frac{n-1}{2}+d+i\brack \frac{n-1}{2}+d-j} {-\frac{n-1}{2}+d-1\brack j}\\ &\quad = {\frac{n-1}{2}+d+i\brack i}^{-1} {i+2d-1\brack \frac{n-1}{2}+d}, \end{split} \end{align*} $$

where the last step follows from the q-Chu–Vandermonde identity (2.1). This gives the desired result.

Proof of Theorem 1.2. It is not hard to see that

$$ \begin{align*} (1-q^{n+(2t+2d-1)})(1-q^{n-(2t+2d-1)})+(1-q^{2t+2d-1})^2q^{n-(2t+2d-1)}=(1-q^n)^2. \end{align*} $$

With the help of the above relation, we find that

$$ \begin{align*} \begin{split} &{\frac{n-1}{2}-d\brack k}_{q^2} {\frac{n-1}{2}+d+k\brack k}_{q^2}\\ &\quad =\frac{1}{(q^2;q^2)_k^2}\prod_{t=1}^{k}(1-q^{n+(2t+2d-1)})(1-q^{n-(2t+2d-1 )})\\ &\quad =\frac{1}{(q^2;q^2)_k^2}\prod_{t=1}^{k}\{(1-q^{n})^2-(1-q^{2t+2d-1})^2q^{n-(2t+2d-1)}\}\\ &\quad \equiv (-1)^k\frac{(q^{2d+1};q^2)_k^2}{(q^2;q^2)_k^2}q^{(n-k-2d)k}\{1-q^{-n}(1-q^n)^2H_k(2d-1)\} \pmod{\Phi_n(q)^4}, \end{split} \end{align*} $$

which implies that, modulo $\Phi _n(q)^4$ ,

(2.4) $$ \begin{align} \frac{(q^{2d+1};q^2)_k^2}{(q^2;q^2)_k^2} \equiv (-1)^kq^{(k+2d-n)k} {\frac{n-1}{2}-d\brack k}_{q^2} {\frac{n-1}{2}+d+k\brack k}_{q^2} \{1+q^{-n}(1-q^n)^2H_k(2d-1)\}. \end{align} $$

However, replacing d by $-d$ in the q-supercongruence (2.4), we easily get

(2.5) $$ \begin{align} \frac{(q^{1-2d};q^2)_k^2}{(q^2;q^2)_k^2} & \equiv (-1)^kq^{(k-2d-n)k} {\frac{n-1}{2}+d\brack k}_{q^2} {\frac{n-1}{2}-d+k\brack k}_{q^2} \notag \\[6pt] &\quad \times\{1+q^{-n}(1-q^n)^2H_k(-2d-1)\} \pmod{\Phi_n(q)^4}. \end{align} $$

Substituting the q-supercongruences (2.4) and (2.5) into the left-hand side of (1.2) in Theorem 1.2 gives: modulo $\Phi _n(q)^4$ ,

(2.6) $$ \begin{align} &\sum_{i=0}^{{(n-1)}/{2}-d} \sum_{j=0}^{{(n-1)}/{2}+d} \frac{(q^{2d+1};q^2)_{i}^2(q^{1-2d};q^2)_{j}^2}{(q^2;q^2)_i(q^2;q^2)_j(q^2;q^2)_{i+j}}q^{2ij-4di+4dj} \notag \\[6pt] &\quad\equiv\sum_{i=0}^{{(n-1)}/{2}-d} \sum_{j=0}^{{(n-1)}/{2}+d} (-1)^{i+j}q^{2ij+(i-2d-n)i+(\,j+2d-n)j} {\frac{n-1}{2}-d\brack i}_{q^2} {\frac{n-1}{2}+d+i\brack i}_{q^2} {\frac{n-1}{2}+d\brack j}_{q^2} \notag\\[6pt] &\qquad\times {\frac{n-1}{2}-d+j\brack j}_{q^2} {i+j\brack i}_{q^2}^{-1} \{1+q^{-n}(1-q^n)^2(H_i(2d-1)+H_j(-2d-1))\}. \end{align} $$

To simplify (2.6), we divide the right-hand side of (2.6) into three parts. Let L stand for the right-hand side of (2.6) and write

$$ \begin{align*}L=L_1+(1-q^n)^2(L_2(d)+L_2(-d)),\end{align*} $$

where

$$ \begin{align*} L_1 & := \sum_{i=0}^{{(n-1)}/{2}-d} \sum_{j=0}^{{(n-1)}/{2}+d} (-1)^{i+j}q^{2ij+(i-2d-n)i+(j+2d-n)j} {\frac{n-1}{2}-d\brack i}_{q^2} {\frac{n-1}{2}+d+i\brack i}_{q^2}\\[6pt] &\quad \times {\frac{n-1}{2}+d\brack j}_{q^2} {\frac{n-1}{2}-d+j\brack j}_{q^2} {i+j\brack i}_{q^2}^{-1}, \\[6pt] L_2(d)&:= \sum_{i=0}^{{(n-1)}/{2}-d}\sum_{j=0}^{{(n-1)}/{2}+d}(-1)^{i+j}q^{2ij+(i-2d-n)i+(\,j+2d-n)j-n} {\frac{n-1}{2}-d\brack i}_{q^2} {\frac{n-1}{2}+d+i\brack i}_{q^2}\\[6pt] &\quad \times{\frac{n-1}{2}+d\brack j}_{q^2} {\frac{n-1}{2}-d+j\brack j}_{q^2} {i+j\brack i}_{q^2}^{-1} H_i(2d-1). \end{align*} $$

We first consider the part $L_1$ . Applying the case $q\rightarrow q^2$ of Lemma 2.1, we can simplify $L_1$ by first calculating the terms indexed j as

(2.7) $$ \begin{align} L_1&=\sum_{i=0}^{{(n-1)}/{2}-d}(-1)^{i}q^{(i-2d-n)i} {\frac{n-1}{2}-d\brack i}_{q^2} {\frac{n-1}{2}+d+i\brack i}_{q^2}\nonumber\\ &\quad \times\sum_{j=0}^{{(n-1)}/{2}+d}(-1)^{\,j}q^{2ij+(\,j+2d-n)j} {\frac{n-1}{2}+d\brack j}_{q^2} {\frac{n-1}{2}-d+j\brack j}_{q^2} {i+j\brack i}_{q^2}^{-1}\nonumber\\ & = \sum_{i=0}^{{(n-1)}/{2}-d}(-1)^iq^{(i-2d-n)i} {\frac{n-1}{2}-d\brack i}_{q^2} {i+2d-1\brack \frac{n-1}{2}+d}_{q^2}. \end{align} $$

In fact, changing the summation order of i and j, $L_1$ can also be expressed as

(2.8) $$ \begin{align} L_1=\sum_{j=0}^{{(n-1)}/{2}+d}(-1)^{\kern1.3pt j}q^{(\,j+2d-n)j} {\frac{n-1}{2}+d\brack j}_{q^2} {j-2d-1\brack \frac{n-1}{2}-d}_{q^2}. \end{align} $$

Next, we shall discuss the evaluation of $L_1$ under three cases.

Case (i): $d=0$ . It is easy to check that

$$ \begin{align*} {i-1\brack \frac{n-1}{2}}_{q^2}=0 \quad\text{for } 1 \leq i \leq \frac{n-1}{2}, \end{align*} $$

which implies (2.7) equals $0$ except for $i=0$ . Thus (2.7) reduces to $(-1)^{(n-1)/2}q^{(1-n^2)/4}$ .

Case (ii): $d\geq 1$ . It is obvious that

$$ \begin{align*} {i+2d-1\brack \frac{n-1}{2}+d}_{q^2}=0 \quad\text{for } 0 \leq i \leq \frac{n-1}{2}-d, \end{align*} $$

which means (2.7) equals $0$ .

Case (iii): $d\leq -1$ . Similarly to case (ii),

$$ \begin{align*} {j-2d-1\brack \frac{n-1}{2}-d}_{q^2}=0 \quad\text{for } 0 \leq j \leq \frac{n-1}{2}+d. \end{align*} $$

It follows that (2.8) equals $0$ .

These considerations show that

(2.9) $$ \begin{align} L_1 = \left \{ \begin{aligned} &(-1)^{(n-1)/2}q^{(1-n^2)/4} &d = 0, & \\[2mm] & 0 &d \neq 0.& \end{aligned} \right. \end{align} $$

At the same time, recalling Lemma 2.1 with $q\rightarrow q^2$ again, we have shown

(2.10) $$ \begin{align} \begin{split} L_2(d) = \sum_{i=0}^{{(n-1)}/{2}-d}(-1)^iq^{(i-2d-n)i-n} {\frac{n-1}{2}-d\brack i}_{q^2} {i+2d-1\brack \frac{n-1}{2}+d}_{q^2}H_i(2d-1). \end{split} \end{align} $$

Likewise, we consider (2.10) in three cases. Following from the assumption that $H_k(x)=0$ for any integer $k<1$ , we thus attain

(2.11) $$ \begin{align} L_2(d)= \left \{ \begin{aligned} & \sum_{i=1}^{-2d}(-1)^iq^{(i-2d-n)i-n} {\frac{n-1}{2}-d\brack i}_{q^2} {i+2d-1\brack \frac{n-1}{2}+d}_{q^2} H_i(2d-1) &d \leq -1, \\ & \ 0 &d \geq 0.\ \ \end{aligned} \right. \end{align} $$

The detailed proof of (2.11) follows the proof of (2.9) and is omitted here. Now it remains to consider $L_2(-d)$ . Taking $d=-d$ in (2.11),

(2.12) $$ \begin{align} L_2(-d)= \left \{ \begin{aligned} &\ 0 &d \leq 0, & \\ & \sum_{j=1}^{2d}(-1)^jq^{(\,j+2d-n)j-n} {\frac{n-1}{2}+d\brack j}_{q^2} {j-2d-1\brack \frac{n-1}{2}-d}_{q^2} H_j(-2d-1) &d \geq 1.& \end{aligned} \right. \end{align} $$

Substituting the three formulas (2.9), (2.11) and (2.12) into (2.6), we arrive at

$$ \begin{align*} \begin{split} &\sum_{i=0}^{{(n-1)}/{2}-d}\sum_{j=0}^{{(n-1)}/{2}+d} \frac{(q^{2d+1};q^2)_{i}^2(q^{1-2d};q^2)_{j}^2}{(q^2;q^2)_i(q^2;q^2)_j(q^2;q^2)_{i+j}}q^{2ij-4di+4dj} \\ &\quad \equiv \left \{ \begin{aligned} & (1-q^n)^2\sum_{i=1}^{-2d}(-1)^iq^{(i-2d-n)i-n} {\frac{n-1}{2}-d\brack i}_{q^2} {i+2d-1\brack \frac{n-1}{2}+d}_{q^2} H_i(2d-1) &d \leq -1, & \\ & (-1)^{(n-1)/2}q^{(1-n^2)/4} &d = 0,& \\ & (1-q^n)^2\sum_{j=1}^{2d}(-1)^jq^{(\,j+2d-n)j-n} {\frac{n-1}{2}+d\brack j}_{q^2} {j-2d-1\brack \frac{n-1}{2}-d}_{q^2}H_j(-2d-1) &d \geq 1.& \end{aligned} \right. \end{split} \end{align*} $$

The cases $d \geq 1$ and $d \leq -1$ can be compactly combined into

$$ \begin{align*} &(1-q^n)^2q^{|d|(2+3|d|-n)-n+{(1-n^2)}/{4}}\\ &\quad\times \sum_{k=1}^{2|d|}(-1)^{k-|d|+(n-1)/2}q^{k^2-k}H_k(-2|d|-1) \frac{(q^{n+2|d|-2k+1};q^2)_k(q^{4|d|-2k+2};q^2)_{(n-2|d|-1)/2}}{(q^2;q^2)_k(q^2;q^2)_{(n-2|d|-1)/2}}. \end{align*} $$

As explained above, this completes the proof of Theorem 1.2.

Acknowledgement

The authors thank the anonymous referee for helpful comments that helped to improve the exposition of this article.

Footnotes

This work is supported by Natural Science Foundation of Shanghai (22ZR1424100).

References

Gasper, G. and Rahman, M., Basic Hypergeometric Series, 2nd edn, Encyclopedia of Mathematics and Its Applications, 96 (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Guo, V. J. W. and Schlosser, M. J., ‘Some $q$ -supercongruences from transformation formulas for basic hypergeometric series’, Constr. Approx. 53 (2021), 155200.10.1007/s00365-020-09524-zCrossRefGoogle Scholar
Guo, V. J. W. and Schlosser, M. J., ‘A family of $q$ -supercongruences modulo the cube of a cyclotomic polynomial’, Bull. Aust. Math. Soc. 105 (2022), 296302.CrossRefGoogle Scholar
Guo, V. J. W. and Zudilin, W., ‘A $q$ -microscope for supercongruences’, Adv. Math. 346 (2019), 329358.10.1016/j.aim.2019.02.008CrossRefGoogle Scholar
Guo, V. J. W. and Zudilin, W., ‘Dwork-type supercongruences through a creative $q$ -microscope’, J. Combin. Theory Ser. A 178 (2021), Article no. 105362.Google Scholar
Li, L. and Wang, S.-D., ‘Proof of a $q$ -supercongruence conjectured by Guo and Schlosser’, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. RACSAM 114 (2020), Article no. 190.Google Scholar
Lin, K.-Y. and Liu, J.-C., ‘Congruences for the truncated Appell series ${F}_3$ and ${F}_4$ ’, Integral Transforms Spec. Funct. 31(1) (2020), 1017.10.1080/10652469.2019.1647421CrossRefGoogle Scholar
Liu, J.-C., ‘Supercongruences for truncated Appell series’, Colloq. Math. 158(2) (2019), 255263.10.4064/cm7462-11-2018CrossRefGoogle Scholar
Liu, J.-C. and Petrov, F., ‘Congruences on sums of $q$ -binomial coefficent’, Adv. Appl. Math. 116 (2020), Article no. 102003.10.1016/j.aam.2020.102003CrossRefGoogle Scholar
Liu, Y. and Wang, X., ‘ $q$ -Analogues of two Ramanujan-type supercongruences’, J. Math. Anal. Appl. 502(1) (2021), Article no. 125238.CrossRefGoogle Scholar
Liu, Y. and Wang, X., ‘Some $q$ -supercongruences from a quadratic transformation by Rahman’, Results Math. 77(1) (2022), Article no. 44.10.1007/s00025-021-01563-7CrossRefGoogle Scholar
Ni, H.-X. and Pan, H., ‘Some symmetric $q$ -congruences modulo the square of a cyclotomic polynomial’, J. Math. Anal. Appl. 481 (2020), Article no. 123372.10.1016/j.jmaa.2019.07.062CrossRefGoogle Scholar
Slater, L. J., Generalized Hypergeometric Functions (Cambridge University Press, Cambridge, 1966).Google Scholar
Wei, C., ‘A further $q$ -analogue of Van Hamme’s (H.2) supercongruence for any prime ${p\equiv 1\left(\operatorname{mod}\ 4\right)}$ ’, Results Math. 76 (2021), Article no. 92.10.1007/s00025-021-01402-9CrossRefGoogle Scholar
Wei, C., ‘Some $q$ -supercongruences modulo the fourth power of a cyclotomic polynomial’, J. Combin. Theory Ser. A 182 (2021), Article no. 105469.Google Scholar
Wei, C., ‘ $q$ -Supercongruences from Gasper and Rahman’s summation formula’, Adv. Appl. Math. 139 (2022), Article no. 102376.CrossRefGoogle Scholar
Xu, C. and Wang, X., ‘Proofs of Guo and Schlosser’s two conjectures’, Period. Math. Hungar., to appear. Published online (6 March 2022); doi:10.1007/s10998-022-00452-y.CrossRefGoogle Scholar
Yu, M. and Wang, X., ‘Proof of two conjectures of Guo and Schlosser’, Ramanujan J. 58 (2022), 239252.CrossRefGoogle Scholar